scholarly journals Impacts of climate warming on forests in Ontario: Options for adaptation and mitigation

2000 ◽  
Vol 76 (1) ◽  
pp. 139-149 ◽  
Author(s):  
C. S. Papadopol

This paper summarizes current knowledge about the optical properties of greenhouse gases and general climate-warming influences. It explains the influence of this new phenomenon on the major ecosystems of the world, and considers the process of deforestation. It then analyzes the warming trends in Ontario based on data from two weather stations with continuous records of more than 120 years, to determine the rate of warming in the Great Lakes-St. Lawrence Region. The results indicate a temperature increase of about 0.76 °C per century and an 8% increase in annual total precipitation.Current climate change models indicate that for a scenario of 2 × CO2 levels some general, probable prognoses can be made, including a temperature increase of up to 4.5 °C, which might be disastrous for existing forest ecosystems. Specifically, the consequences of climate warming on (a) northward shifts of ecological conditions, (b) forest productivity, and (c) forest physiology and health, are examined. In the context of global warming, the paper then recommends practical management measures necessary to ensure adaptation of existing forest ecosystems to the warming that is already developing. These measures are intended to provide a no-risk environment for existing forests until rotation age. Next, a wide range of mitigative measures is examined with a view to securing the long-term preservation of forest ecosystems to avoid major ecological disruptions and, gradually, to reverse climate warming. Application of these measures requires international consensus, but countries that apply these recommendations first have a chance to profit from them due to the "CO2 fertilization" effect. Key words: climate change, silviculture, forest management

2016 ◽  
Vol 1 ◽  
pp. 53
Author(s):  
S. Ishaq ◽  
M. Z. Khan ◽  
F. Begum ◽  
K. Hussain ◽  
R. Amir ◽  
...  

Climate Change is not a stationary phenomenon; it moves from time to time, it represents a major threat to mountainous biodiversity and to ecosystem integrity. The present study is an attempt to identify the current knowledge gap and the effects of climate change on mountainous biodiversity, a special reference to the Gilgit-Baltistan is briefly reviewed. Measuring the impact of climate change on mountain biodiversity is quite challenging, because climate change interacts with every phenomenon of ecosystem. The scale of this change is so large and very adverse so strongly connected to ecosystem services, and all communities who use natural resources. This study aims to provide the evidences on the basis of previous literature, in particular context to mountain biodiversity of Gilgit-Baltistan (GB). Mountains of Gilgit-Baltistan have most fragile ecosystem and are more vulnerable to climate change. These mountains host variety of wild fauna and flora, with many endangered species of the world. There are still many gaps in our knowledge of literature we studied because very little research has been conducted in Gilgit-Baltistan about climate change particular to biodiversity. Recommendations are made for increased research efforts in future this including jointly monitoring programs, climate change models and ecological research. Understanding the impact of climate change particular to biodiversity of GB is very important for sustainable management of these natural resources. The Government organizations, NGOs and the research agencies must fill the knowledge gap, so that it will help them for policy making, which will be based on scientific findings and research based.


Author(s):  
Ratko Ristić ◽  
Ivan Malušević ◽  
Boris Radić ◽  
Slobodan Milanović ◽  
Vukašin Milčanović ◽  
...  

Forest ecosystems provide a wide range of environmental services with an important role in the Earth’s life-support system. Climate change in Southeastern Europe (SEE) and forecasts for the period until 2070 have a huge impact on the present and future planning in forestry and watershed management, due to the observed trends: the increment of mean annual air temperature from 2,5–5,0 °C until the end of the XXI century; redistribution of annual precipitation, with much more precipitation in the spring-summer period, during short, intensive rain events; a decrease of annual precipitation and soil moisture of 10–20 %, with extreme consequences: dieback and disappearance of forests in huge areas of hilly-mountainous regions. Degradation and loss of forests leads to spread and intensification of soil erosion, with frequent torrential floods, mudflows, landslides, and avalanches. Stable forest ecosystems are pillars of sustainable development, repopulation and could provide means and resources to battle and overcome poverty in moun-tainous regions of southeast Europe.


2005 ◽  
Vol 81 (5) ◽  
pp. 710-716 ◽  
Author(s):  
T B Williamson ◽  
J R Parkins ◽  
B L McFarlane

Perception of risk or subjective risk is playing an increasingly important role in risk assessment. This paper describes a study that investigated perceptions of climate change risk to forest ecosystems and forest-based communities among a sample of Canadian forestry experts. Data were collected by questionnaire from participants at a climate change and forestry workshop, sponsored by the Canadian Climate Impacts and Adaptation Research Network Forest Sector and the McGregor Model Forest held in Prince George, British Columbia in February 2003. These forestry experts were somewhat concerned about the impacts of climate change, and they appeared unlikely to oppose strategies for preparing for and adapting to climate change. The respondents felt that the effects of climate change on forests and forest-based communities are not well understood by the general public or forest managers. They also felt that there is a relatively high level of uncertainty about the effects of climate change, especially with respect to forest-based communities. These results have important implications, including reinforcement of the need for greater awareness of climate change risks and for increased research and monitoring effort targeted at reducing levels of uncertainty about future impacts at local scales. Key words: climate change, risk perceptions, forest ecosystems, forest-based communities


2021 ◽  
Vol 11 (24) ◽  
pp. 11821
Author(s):  
Giuseppe Marco Tina ◽  
Claudio F. Nicolosi

Climate change due to the greenhouse effect will affect meteorological variables, which in turn will affect the demand for electrical energy and its generation in coming years. These impacts will become increasingly important in accordance with the increasing penetration of renewable, non-programmable energy sources (e.g., wind and solar). Specifically, the speed and amplitude of power system transformation will be different from one country to another according to many endogenous and exogenous factors. Based on a literature review, this paper focuses on the impact of climate change on the current, and future, Italian power system. The paper shows a wide range of results, due not just to the adopted climate change models used, but also to the models used to assess the impact of meteorological variables on electricity generation and demand. Analyzing and interpreting the reasons for such differences in the model results is crucial to perform more detailed numerical analyses on the adequacy and reliability of power systems. Concerning Italian future scenarios, the double impact of uncertainties in national policies and changes in power plant productivity and demand, has been considered and addressed.


2021 ◽  
Author(s):  
Emily Morris

Climate change will produce a wide range of challenges for grassland ecosystems, including increased global surface air temperature. Increased temperature can increase cell membrane fluidity in plants and other organisms; a response known as homeoviscous adaptation. However, this phenomenon has not been extensively studied in grassland plant species and has not been widely observed in plants from a climate warming perspective. I exposed seven species of agricultural forage plants to a temperature gradient consistent with climate change estimates for Southern Ontario. I compared relative fatty acid composition between temperature conditions, paying particular attention to the relative content of saturated, monounsaturated, and polyunsaturated fatty acids, and essential fatty acids. For most species, I found saturated fatty acid content decreased with increasing temperature, while polyunsaturated fatty acid content and essential fatty acid content increased with increasing temperature. My thesis provides insights into the effects of climate warming on pasture ecosystems.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Ridwan Siddique ◽  
Alfonso Mejia ◽  
Naoki Mizukami ◽  
Richard N. Palmer

Regional climate change impacts show a wide range of variations under different levels of global warming. Watersheds in the northeastern region of the United States (NEUS) are projected to undergo the most severe impacts from climate change in the forms of extreme precipitation events, floods and drought, sea level rise, etc. As such, there is high possibility that hydrologic regimes in the NEUS may be altered in the future, which can be absolutely devastating for managing water resources and ecological balance across different watersheds. In this study, we present a comprehensive impact analysis using different hydrologic indicators across selected watersheds in the NEUS under different thresholds of global temperature increases (1.5, 2.0 and 3.0 °C). Precipitation and temperature projections from fourteen downscaled Global Circulation Models (GCMs) under the representative concentration pathway (RCP) 8.5 greenhouse gas concentration pathway are used as inputs into a distributed hydrological model to obtain future streamflow conditions. Overall, the results indicate that the majority of the selected watersheds will enter a wetter regime, particularly during the months of winter, while flow conditions during late summer and fall indicate a dry future under all three thresholds of temperature increase. The estimation of time of emergence of new hydrological regimes show large uncertainties under 1.5 and 2.0 °C global temperature increases; however, most of the GCM projections show a strong consensus that new hydrological regimes may appear in the NEUS watersheds under 3.0 °C temperature increase.


2000 ◽  
Vol 76 (1) ◽  
pp. 165-172 ◽  
Author(s):  
G. Cornells van Kooten ◽  
Emina Krcmar–Nozic ◽  
Ruud van Gorkom ◽  
Brad Stennes

The Kyoto Accord on climate change requires developed countries to achieve CO2-emissions reduction targets, but permits them to charge uptake of carbon (C) in terrestrial (primarily forest) ecosystems against emissions. Countries such as Canada hope to employ massive afforestation programs to achieve Kyoto targets. One reason is that foresters have identified large areas that can be afforested. In this paper, we examine this forestry option, focusing on the economics of afforestation in western Canada. In particular, we develop marginal C uptake curves and show that much less land is available for afforestation than would be the case if economics is ignored. We conclude that, while afforestation is a feasible weapon in the greenhouse policy arsenal, it might not be as effective on an economic basis as many forest-sector analysts make out. Key words: Climate change, economics of afforestation, Kyoto Accord


2021 ◽  
Author(s):  
Emily Morris

Climate change will produce a wide range of challenges for grassland ecosystems, including increased global surface air temperature. Increased temperature can increase cell membrane fluidity in plants and other organisms; a response known as homeoviscous adaptation. However, this phenomenon has not been extensively studied in grassland plant species and has not been widely observed in plants from a climate warming perspective. I exposed seven species of agricultural forage plants to a temperature gradient consistent with climate change estimates for Southern Ontario. I compared relative fatty acid composition between temperature conditions, paying particular attention to the relative content of saturated, monounsaturated, and polyunsaturated fatty acids, and essential fatty acids. For most species, I found saturated fatty acid content decreased with increasing temperature, while polyunsaturated fatty acid content and essential fatty acid content increased with increasing temperature. My thesis provides insights into the effects of climate warming on pasture ecosystems.


2020 ◽  
Vol 71 (13) ◽  
pp. 3865-3877 ◽  
Author(s):  
Marta-Marina Pérez-Alonso ◽  
Carmen Guerrero-Galán ◽  
Sandra S Scholz ◽  
Takatoshi Kiba ◽  
Hitoshi Sakakibara ◽  
...  

Abstract Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2–5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant–fungus interactions.


Sign in / Sign up

Export Citation Format

Share Document