scholarly journals THE ROLE OF FOREST ECOSYSTEMS IN THE PROCESS OF MITIGATION AND ADAPTATION TO THE EFFECTS OF CLIMATE CHANGE

Author(s):  
Ratko Ristić ◽  
Ivan Malušević ◽  
Boris Radić ◽  
Slobodan Milanović ◽  
Vukašin Milčanović ◽  
...  

Forest ecosystems provide a wide range of environmental services with an important role in the Earth’s life-support system. Climate change in Southeastern Europe (SEE) and forecasts for the period until 2070 have a huge impact on the present and future planning in forestry and watershed management, due to the observed trends: the increment of mean annual air temperature from 2,5–5,0 °C until the end of the XXI century; redistribution of annual precipitation, with much more precipitation in the spring-summer period, during short, intensive rain events; a decrease of annual precipitation and soil moisture of 10–20 %, with extreme consequences: dieback and disappearance of forests in huge areas of hilly-mountainous regions. Degradation and loss of forests leads to spread and intensification of soil erosion, with frequent torrential floods, mudflows, landslides, and avalanches. Stable forest ecosystems are pillars of sustainable development, repopulation and could provide means and resources to battle and overcome poverty in moun-tainous regions of southeast Europe.

2000 ◽  
Vol 76 (1) ◽  
pp. 139-149 ◽  
Author(s):  
C. S. Papadopol

This paper summarizes current knowledge about the optical properties of greenhouse gases and general climate-warming influences. It explains the influence of this new phenomenon on the major ecosystems of the world, and considers the process of deforestation. It then analyzes the warming trends in Ontario based on data from two weather stations with continuous records of more than 120 years, to determine the rate of warming in the Great Lakes-St. Lawrence Region. The results indicate a temperature increase of about 0.76 °C per century and an 8% increase in annual total precipitation.Current climate change models indicate that for a scenario of 2 × CO2 levels some general, probable prognoses can be made, including a temperature increase of up to 4.5 °C, which might be disastrous for existing forest ecosystems. Specifically, the consequences of climate warming on (a) northward shifts of ecological conditions, (b) forest productivity, and (c) forest physiology and health, are examined. In the context of global warming, the paper then recommends practical management measures necessary to ensure adaptation of existing forest ecosystems to the warming that is already developing. These measures are intended to provide a no-risk environment for existing forests until rotation age. Next, a wide range of mitigative measures is examined with a view to securing the long-term preservation of forest ecosystems to avoid major ecological disruptions and, gradually, to reverse climate warming. Application of these measures requires international consensus, but countries that apply these recommendations first have a chance to profit from them due to the "CO2 fertilization" effect. Key words: climate change, silviculture, forest management


2019 ◽  
Vol 11 (3) ◽  
pp. 230 ◽  
Author(s):  
Tien Pham ◽  
Naoto Yokoya ◽  
Dieu Bui ◽  
Kunihiko Yoshino ◽  
Daniel Friess

The mangrove ecosystem plays a vital role in the global carbon cycle, by reducing greenhouse gas emissions and mitigating the impacts of climate change. However, mangroves have been lost worldwide, resulting in substantial carbon stock losses. Additionally, some aspects of the mangrove ecosystem remain poorly characterized compared to other forest ecosystems due to practical difficulties in measuring and monitoring mangrove biomass and their carbon stocks. Without a quantitative method for effectively monitoring biophysical parameters and carbon stocks in mangroves, robust policies and actions for sustainably conserving mangroves in the context of climate change mitigation and adaptation are more difficult. In this context, remote sensing provides an important tool for monitoring mangroves and identifying attributes such as species, biomass, and carbon stocks. A wide range of studies is based on optical imagery (aerial photography, multispectral, and hyperspectral) and synthetic aperture radar (SAR) data. Remote sensing approaches have been proven effective for mapping mangrove species, estimating their biomass, and assessing changes in their extent. This review provides an overview of the techniques that are currently being used to map various attributes of mangroves, summarizes the studies that have been undertaken since 2010 on a variety of remote sensing applications for monitoring mangroves, and addresses the limitations of these studies. We see several key future directions for the potential use of remote sensing techniques combined with machine learning techniques for mapping mangrove areas and species, and evaluating their biomass and carbon stocks.


2015 ◽  
Vol 44 (5) ◽  
pp. 8-11
Author(s):  
MC Mokolobate ◽  
A Theunissen ◽  
MM Scholtz ◽  
FWC Neser

Beef cattle are unique, because they not only suffer from climate change, but they also contribute to climate change through the emission of greenhouse gases (GHG). Mitigation and adaptation strategies are therefore needed. An effective way to reduce the carbon footprint from beef cattle would be to reduce the numbers and increase the production per animal, thereby improving their productivity. Sustainable crossbreeding systems can be an effective way to reduce GHG, as it has been shown to increase production. There are a wide range of different cattle breeds in South Africa which can be optimally utilized for effective and sustainable crossbreeding. This paper reports on the effects of crossbreeding on the kilogram calf weaned per Large Stock Unit (kgC/LSU) for 29 genotypes. These genotypes were formed by crossing Afrikaner (A) cows with Brahman (B), Charolais (C), Hereford (H) and Simmentaler (S) bulls and by back-crossing the F1 cows to the sire lines. A LSU is the equivalent of an ox of 450 kg with a daily weight gain of 500 g on grass pastures with a mean digestible energy (DE) content of 55% and a requirement of 75 MJ metabolizable energy (ME). Crossbreeding with A as dam line increased the kgC/LSU on average by 8 kg (+6%) - with the CA cross producing the most kgC/LSU (+8%) above that of the AA. The BA dam in crosses with C, H and S, increased kgC/LSU on average by 26 kg (+18%) above that of the AA dam, with the H x BA cross, producing the most kgC/LSU (+21%). The BA, CA, HA and SA F1 dam lines, back-crossed to the sire line breeds, increased kgC/LSU on average by 30 kg (21%), 21 kg (15%), 19kg (13%) and 26 kg (18%) above the that of the AA, respectively. The big differences between breeds in kgC/LSU provide the opportunity to facilitate effective crossbreeding that can be useful in the era of climate change. From this study it is clear that cow productivity can be increased by up to 21% through properly designed, sustainable crossbreeding systems, thereby reducing the carbon footprint of beef production.Keywords: Carbon footprint, cow productivity, kilogram calf, production systems


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1768
Author(s):  
Matteo Rubinato ◽  
Min Luo ◽  
Xing Zheng ◽  
Jaan H. Pu ◽  
Songdong Shao

Fast urbanization and industrialization have progressively caused severe impacts on mountainous, river, and coastal environments, and have increased the risks for people living in these areas. Human activities have changed ecosystems hence it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties on the accurate and efficient management of these areas to protect the environment as well as the health and safety of people. In actual fact, climate change is altering rain patterns and causing extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and the contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigate the underlying causes, and to identify feasible mitigation and adaptation strategies to reduce negative impacts on both the environment and citizens. To contribute towards this aim, the selected papers in this Special Issue covered a wide range of issues that are mainly relevant to: (i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; (ii) the effect of climate change on the hydrological processes in mountainous, river, and coastal environments, (iii) the protection of ecosystems and the restoration of areas damaged by the effects of climate change and human activities.


2016 ◽  
Vol 46 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Olivier Blarquez ◽  
Julie C. Aleman

Forest ecosystems in eastern Canada are particularly sensitive to climate change and may shift from carbon sinks to carbon sources in the coming decades. Understanding how forest biomass responded to past climate change is thus of crucial interest, but past biomass reconstruction still represents a challenge. Here we used transfer functions based on modern pollen assemblages and remotely sensed biomass estimation to reconstruct and quantify, for the last 14 000 years, tree biomass dynamics for the six main tree genera of the boreal and mixedwood forests (Abies, Acer, Betula, Picea, Pinus, Populus). We compared the mean genera and total biomass with climatic (summer temperatures and annual precipitation), physical (CO2, insolation, ice area), and disturbance (burned biomass) variables to identify the potential drivers influencing the long-term trends in tree biomass. For most genera, tree biomass was related to summer temperature, insolation, and CO2 levels; Picea was the exception and its biomass also correlated with annual precipitation. At the onset of the Holocene and during the Holocene Thermal Maximum (ca. 10 000–6000 BP), tree biomass tracked the melting of the Laurentide Ice Sheet with high values (>50 tonnes·ha–1 and a total of 12 Pg). These values, in the range of modern forest ecosystems biomass, indicate that trees were probably able to survive in a periglacial environment and to colonize the region without any discernible lag by tracking the ice retreat. High biomass at the beginning of the Holocene was likely favoured by higher than present insolation, CO2 levels higher than during the Last Glacial Maximum, and temperature and precipitation close to present-day levels. Past tree biomass reconstruction thus brings novel insights about the drivers of postglacial tree biomass and the overall biogeography of the region since the deglaciation.


Author(s):  
Almut Arneth ◽  
Lennart Olsson ◽  
Annette Cowie ◽  
Karl-Heinz Erb ◽  
Margot Hurlbert ◽  
...  

Land degradation continues to be an enormous challenge to human societies, reducing food security, emitting greenhouse gases and aerosols, driving the loss of biodiversity, polluting water, and undermining a wide range of ecosystem services beyond food supply and water and climate regulation. Climate change will exacerbate several degradation processes. Investment in diverse restoration efforts, including sustainable agricultural and forest land management, as well as land set aside for conservation wherever possible, will generate co-benefits for climate change mitigation and adaptation and more broadly for human and societal well-being and the economy. This review highlights the magnitude of the degradation problem and some of the key challenges for ecological restoration. There are biophysical as well as societal limits to restoration. Better integrating policies to jointly address poverty, land degradation, and greenhouse gas emissions and removals is fundamental to reducing many existing barriers and contributing to climate-resilient sustainable development. Expected final online publication date for the Annual Review of Environment and Resources, Volume 46 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Author(s):  
R. J. Dahm ◽  
U. K. Singh ◽  
M. Lal ◽  
M. Marchand ◽  
F. C. Sperna Weiland ◽  
...  

Abstract. The delta of the Brahmani-Baitarani river basin, located in the eastern part of India, frequently experiences severe floods. For flood risk analysis and water system design, insights in the possible future changes in extreme rainfall events caused by climate change are of major importance. There is a wide range of statistical and dynamical downscaling and bias-correction methods available to generate local climate projections that also consider changes in rainfall extremes. Yet the applicability of these methods highly depends on availability of meteorological observations at local level. In the developing countries data and model availability may be limited, either due to the lack of actual existence of these data or because political data sensitivity hampers open sharing. We here present the climate change analysis we performed for the Brahmani-Baitarani river basin focusing on changes in four selected indices for rainfall extremes using data from three performance-based selected GCMs that are part of the 5th Coupled Model Intercomparison Project (CMIP5). We apply and compare two widely used and easy to implement bias correction approaches. These methods were selected as best suited due to the absence of reliable long historic meteorological data. We present the main changes – likely increases in monsoon rainfall especially in the Mountainous regions and a likely increase of the number of heavy rain days. In addition, we discuss the gap between state-of-the-art downscaling techniques and the actual options one is faced with in local scale climate change assessments.


2017 ◽  
Vol 20 ◽  
pp. 41-48 ◽  
Author(s):  
Utsab Bhattarai

The potential adverse effects of climate change have posed serious threat to all species of the planet in many ways. Species’ functional characteristics strongly influence ecosystem properties. Although significant numbers of studies have already explored the interrelationship between biodiversity, ecosystem services and climate change more focused studies have now begun to appear with the goal of investigating and analyzing the negative consequences of climate change on life support systems. This review paper discusses the impacts of climate change on biodiversity and redirects how these losses of biological species on earth have affected and will continue to have effects on the delivery chain of ecosystem services. Concluding section of this paper spotlights on possible mitigation and adaptation plan of actions which contributes in minimizing climate change induced risks while supporting biodiversity and thus the entire ecosystem services. The timeliness of this review is evident because the concerns regarding the potential impacts of global climate change on species and ecosystem services are widely and seriously recognized as major threat of our time.HYDRO Nepal JournalJournal of Water Energy and EnvironmentIssue: 20Page: 41-48


2018 ◽  
Vol 10 (4) ◽  
pp. 782-798
Author(s):  
R. J. Dahm ◽  
F. C. Sperna Weiland ◽  
U. K. Singh ◽  
M. Lal ◽  
M. Marchand ◽  
...  

Abstract Severe floods are common in the Brahmani-Baitarani river basin in India. Insights into the implications of climate change on rainfall extremes and resulting floods are of major importance to improve flood risk analysis and water system design. A wide range of statistical and dynamical downscaling and bias-correction methods for the generation of local climate projections exists. Yet, the applicability of these methods highly depends on availability of meteorological data. In developing countries, data availability is often limited, either because data do not exist or because of restrictions on use. We here present a climate change analysis for the Brahmani-Baitarani river basin focusing on changes in rainfall using data from three GCMs from the Fifth Coupled Model Intercomparison Project (CMIP5) that were selected based on their performance. We apply and compare two widely used and easy to implement bias-correction methods. These were selected because reliable open historical meteorological datasets required for advanced methods were not available. The results indicate likely increases in monsoon rainfall especially in the mountainous regions and likely increases in the number of heavy rain days. We conclude with a discussion on the gap between state-of-the-art downscaling techniques and the actual options in regional climate change assessments.


Heritage ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 371-386
Author(s):  
Roha W. Khalaf

At a time when climate change, conflicts, disasters, and other global crises and challenges are increasingly affecting World Heritage properties, the utility of conservation assessment standards must be rethought. This article proposes abandoning the assessment of authenticity to treat properties less as “things”, deemed authentic or not, and more as evolving “processes” that embrace continuity and compatible change, which, it is argued, helps meet the challenges of the twenty-first century, namely climate change mitigation and adaptation; building back better after conflicts, disasters, or pandemics; and, ultimately, achieving sustainable development goals. Drawing on policy analysis and a wide range of literature, the article explains why authenticity is not a useful concept and why the idea of “heritage as process” is more relevant to the contemporary world. It shows how this idea can be put into effect and linked to Outstanding Universal Value, integrity, protection and management, which are already requirements in UNESCO’s Operational Guidelines for the implementation of the World Heritage Convention. In doing so, it contributes to aligning the implementation of the Convention with that of the global agendas of our time.


Sign in / Sign up

Export Citation Format

Share Document