Characteristic of the wear of a tool coating based on amorphous carbon during chipboard milling
Characteristic of the wear of a tool coating based on amorphous carbon during chipboard milling. The study verified the durability and the course of wear during the durability tests of the TiAlN / a-C:N double tool coating. The aforementioned coating consisted of a bottom layer of TiAlN and a top layer based on nitrogenenriched amorphous carbon. Standard replaceable cutters for milling heads made of WC-Co sintered carbide were subjected to the modification process. The coating was applied using plasma by RF Magnetron Sputtering. During the tests, the blade wear was measured using a workshop microscope. The VB max indicator measured on the clearance face was adopted as the blunting criterion and its maximum value was set on 0,2 mm. The results show that the additional coating of amorphous carbon contributed to the increase of the tool durability determined with cutting distance. The use of only a single layer based on TiAlN shortened the durability by about 3%. On the other hand, applying both the bottom and top layers TiAlN /a-C:N) extended the cutting distance by about 24%. The research showed a clear advantage in terms of the durability of the blades modified with a multi-layer coating in relation to a single-layer. Moreover, the positive effect of the top layer containing amorphous carbon on tool durability has been demonstrated.