scholarly journals FUNÇÕES SPLINES APLICADAS EM DADOS DE CRESCIMENTO

2017 ◽  
Vol 13 (Especial 2) ◽  
pp. 222-234
Author(s):  
Lorrayne Gomes ◽  
Milena Vieira Lima ◽  
Jeferson Corrêa Ribeiro ◽  
Andreia Santos Cezário ◽  
Eliandra Maria Bianchini Oliveira ◽  
...  

In animal breeding, new methodologies can be applied in statistical analysis to improve the genetic evaluation and, for this reason, they have been the subject in several studies. In the last years, several research works have intended the model development with more adjustable functions to the distinct variables. A set of functions known as Spline functions has called the attention of researches. Then, the purpose of this review is to discuss the use of Spline functions that are applied to growth data in animal breeding. Splines are segmented regression functions that are united by points known as joint points and have the ability to improve the curvature of models and, therefore, the function adjustment. These functions have interesting properties such as the interpolatory nature, less multicolinearity problems, parameter linearity and the ability of increasing the approximation domain, all of which provide estimates in a wide range of possible values. There are three types of Spline functions: natural spline functions, smoothing spline 223 Colloquium Agrariae, vol. 13, n. Especial 2, Jan–Jun, 2017, p. 222-234. ISSN: 1809-8215. DOI: 10.5747/ca.2017.v13.nesp2.000229 functions or nonparametric regression and B-splines functions. These latter functions are more applied to animal breeding, mainly as alternatives to random regression models (RRM) that use the Legendre polynomials. The matrices formed by RRMs with the use of B-spline functions or Legendre polynomials are more scarce and easier to be inverted. Then, the use of Spline functions has been more intensified in the last years because studies have had the purpose of improving the adjustment with less model parameters in functions. New studies will allow improving the methodology and finding out new applications to the Spline functions.

animal ◽  
2018 ◽  
Vol 12 (4) ◽  
pp. 667-674 ◽  
Author(s):  
L.F.M. Mota ◽  
P.G.M.A. Martins ◽  
T.O. Littiere ◽  
L.R.A. Abreu ◽  
M.A. Silva ◽  
...  

2009 ◽  
Vol 39 (10) ◽  
pp. 1939-1948 ◽  
Author(s):  
Chunkao Wang ◽  
Bengt Andersson ◽  
Patrik Waldmann

Genetic analysis of forest longitudinal height data using random regression (RR) has the potential to be attractive to tree breeders because of its advantages for selection at early ages. Our study provides an example of implementation of RR to forest tree height growth data. The data set comes from the Swedish Scots pine ( Pinus sylvestris L.) breeding program with a pedigree over three generations and consists of 899 trees with reconstructed phenotypic height records for 16 years. Legendre polynomials and B-splines were used as base functions in RR models. The restricted maximum likelihood method was employed to estimate (co)variance parameters. Results show that heritability increased with age, except for early ages (years 1 to 4). In general, slightly higher heritabilities were found for the RR model than for the single-trait and paired-trait analyses for most ages. Moreover, the heritabilities obtained with B-splines as the base function tended to be somewhat higher than those obtained with Legendre polynomials. The RR method provides a promising approach for estimating genetic parameters of longitudinal data that can be used in early selection. However, application to real data from other species and to simulated data is needed before general breeding recommendations can be established.


Author(s):  
Christian Devereux ◽  
Justin Smith ◽  
Kate Davis ◽  
Kipton Barros ◽  
Roman Zubatyuk ◽  
...  

<p>Machine learning (ML) methods have become powerful, predictive tools in a wide range of applications, such as facial recognition and autonomous vehicles. In the sciences, computational chemists and physicists have been using ML for the prediction of physical phenomena, such as atomistic potential energy surfaces and reaction pathways. Transferable ML potentials, such as ANI-1x, have been developed with the goal of accurately simulating organic molecules containing the chemical elements H, C, N, and O. Here we provide an extension of the ANI-1x model. The new model, dubbed ANI-2x, is trained to three additional chemical elements: S, F, and Cl. Additionally, ANI-2x underwent torsional refinement training to better predict molecular torsion profiles. These new features open a wide range of new applications within organic chemistry and drug development. These seven elements (H, C, N, O, F, Cl, S) make up ~90% of drug like molecules. To show that these additions do not sacrifice accuracy, we have tested this model across a range of organic molecules and applications, including the COMP6 benchmark, dihedral rotations, conformer scoring, and non-bonded interactions. ANI-2x is shown to accurately predict molecular energies compared to DFT with a ~10<sup>6</sup> factor speedup and a negligible slowdown compared to ANI-1x. The resulting model is a valuable tool for drug development that can potentially replace both quantum calculations and classical force fields for myriad applications.</p>


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 457-467 ◽  
Author(s):  
Z W Luo ◽  
S H Tao ◽  
Z-B Zeng

Abstract Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 839
Author(s):  
Muhammad Rafiullah Khan ◽  
Vanee Chonhenchob ◽  
Chongxing Huang ◽  
Panitee Suwanamornlert

Microorganisms causing anthracnose diseases have a medium to a high level of resistance to the existing fungicides. This study aimed to investigate neem plant extract (propyl disulfide, PD) as an alternative to the current fungicides against mango’s anthracnose. Microorganisms were isolated from decayed mango and identified as Colletotrichum gloeosporioides and Colletotrichum acutatum. Next, a pathogenicity test was conducted and after fulfilling Koch’s postulates, fungi were reisolated from these symptomatic fruits and we thus obtained pure cultures. Then, different concentrations of PD were used against these fungi in vapor and agar diffusion assays. Ethanol and distilled water were served as control treatments. PD significantly (p ≤ 0.05) inhibited more of the mycelial growth of these fungi than both controls. The antifungal activity of PD increased with increasing concentrations. The vapor diffusion assay was more effective in inhibiting the mycelial growth of these fungi than the agar diffusion assay. A good fit (R2, 0.950) of the experimental data in the Gompertz growth model and a significant difference in the model parameters, i.e., lag phase (λ), stationary phase (A) and mycelial growth rate, further showed the antifungal efficacy of PD. Therefore, PD could be the best antimicrobial compound against a wide range of microorganisms.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


Sign in / Sign up

Export Citation Format

Share Document