wood modification
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 43)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Dennis Jones ◽  
Lina Nunes ◽  
Sonia Duarte

The desire to incorporate wood in modern construction has led to a considerable increase in the use of wood modification techniques, and especially thermal modification. However, thermally modified wood has poor performance against termites. The concept of using a combined chemical and thermal modification has been undertaken through the impregnation with either bicine or tricine prior to modification. This paper considers the effects of these chemicals on the activity of termites and considers their mode of action in terms of termite survival and on their effects on the symbiotic protists present within the termite gut.


2021 ◽  
Vol 116 ◽  
pp. 39-45
Author(s):  
Jakub Gawron

Influence of environment, temperature and time of the thermal modification of ash wood (Fraxinus excelsior L.) on the cellulose weight average degree of polymerization . Using the size-exclusion chromatography (HPLC SEC) method, the weight average degree of cellulose polymerization was determined. The polymer was isolated by the Kürschner-Hoffer method from ash wood (Fraxinus excelsior L.). The wood was thermally modified in different environments (nitrogen, steam and air) at 190°C and modification times of 2, 6 and 10 hours. Depending on the anaerobic atmosphere used, the highest values of the weight average degree of cellulose polymerization were obtained for the nitrogen environment, followed by steam and air. The effect of modification time on the weight average degree of polymerization was observed. The highest values were obtained for wood modified at 2 hours, then 6 and 10 hours of modification. The native wood showed the highest degree of polymerization. On the basis of the results obtained, it can be concluded that for the material studied the oxidation and degradation reactions occurring depend on the environment and time for a given temperature of wood modification.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1581
Author(s):  
Istie Rahayu ◽  
Fitria Cita Dirna ◽  
Akhiruddin Maddu ◽  
Wayan Darmawan ◽  
Dodi Nandika ◽  
...  

Sengon (Falcataria moluccana Miq.) is one of the fastest growing wood that is broadly planted in Indonesia. Sengon wood has inferior wood properties, such as a low density and dimensional stability. Therefore, sengon wood requires a method to improve its wood quality through wood modification. One type of wood modification is wood impregnation. On the other hand, Betung Bamboo leaves are considered as waste. Betung Bamboo leaves contain silica. Based on several researches, nano-SiO2 could improve fast-growing wood qualities. According to its perfect solubility in water, monoethylene glycol (MEG) is used in the study. The objectives are to evaluate the impregnation treatment (MEG and nano-silica originated from betung bamboo leaves) in regard to the dimensional stability and density of 5-year-old sengon wood and to characterize the treated sengon wood. MEG, MNano-Silica 0.5%, MNano-Silica 0.75%, and MNano-Silica 1% were used as impregnation solutions. The impregnation method was started with 0.5 bar of vacuum for 60 min, followed by 2.5 bar of pressure for 120 min. The dimensional stability, density, and characterization of the samples were studied through the use of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results show that the treatment had a significant effect on the dimensional stability and density of sengon wood. Alterations in the morphology of treated sengon wood were observed through the full coverage of the pits on the vessel walls (SEM analysis results) and the detection of ethylene (FTIR analysis results) and silica (XRD and FTIR analysis results). Overall, the 0.75% MNano-Silica treatment was the most optimal treatment for increasing the dimensional stability and density of 5-year-old sengon wood.


Author(s):  
Akhil Saji

Abstract: Engineered wood flooring comprises three or more layers of wood veneer adhered together to create a plank. The surfaces were coated to scale back water absorption. However, as wood is a hygroscopic substance, it loses and gains moisture from the atmosphere. This affects the dimensional stability of the floor badly, which emanates wide gaps between boards, cupped edges, crowning edges, and bulking of boards. Hence, the main intention of this study was to stabilize the engineered wood flooring by filling the wood cavity with linseed oil, paraffin wax, and a mixture of both, and evaluate the physical, mechanical property of treated and non-treated engineered wood flooring boards. The treatments were conducted at different temperature and durations. Keywords: Dimensional stabilization, Wood modification, Wood floor, Linseed oil, Paraffin wax, Impregnation


2021 ◽  
pp. 1-114
Author(s):  
Dick Sandberg ◽  
Andreja Kutnar ◽  
Olov Karlsson ◽  
Dennis Jones
Keyword(s):  

2021 ◽  
pp. 291-321
Author(s):  
Dick Sandberg ◽  
Andreja Kutnar ◽  
Olov Karlsson ◽  
Dennis Jones
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2533
Author(s):  
Johannes Karthäuser ◽  
Vladimirs Biziks ◽  
Carsten Mai ◽  
Holger Militz

Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 366
Author(s):  
Callum Hill ◽  
Mark Hughes ◽  
Daniel Gudsell

The modification of wood involves extra processing over and above what is associated with un-modified material and this will involve an associated environmental impact. There is now a body of information on this due to the presence in the public domain of a number of environmental product declarations (EPDs). Using these data, it is possible to determine what the extra impact associated with the modification is. The process of modification results in a life extension of the product, which has implications regarding the storage of sequestered atmospheric carbon in the harvested wood products (HWP) materials’ pool and also extended maintenance cycles (e.g., longer periods between applying coatings). Furthermore, the life extension benefits imparted by wood modification need to be compared with the use of other technologies, such as conventional wood preservatives. This paper analysed the published data from a number of sources (peer-reviewed literature, published EPDs, databases) to compare the impacts associated with different modification technologies. The effect of life extension was examined by modelling the carbon flow dynamics of the HWP pool and determining the effect of different life extension scenarios. Finally, the paper examined the impact of different coating periods, and the extensions thereof, imparted by the use of different modified wood substrates.


Sign in / Sign up

Export Citation Format

Share Document