scholarly journals Heat Exchange in Furnace Side Walls with Embedded Water Cooled Cooling Devices

Author(s):  
Gabriel Plascencia
2007 ◽  
Vol 553 ◽  
pp. 130-135
Author(s):  
Gabriel Plascencia ◽  
Torstein A. Utigard ◽  
Juliana Gutiérrez ◽  
David Jaramillo ◽  
Vicente Mayagoitia ◽  
...  

A three dimensional numerical heat transfer model has been developed to estimate the heat flux trough furnace side walls protected with water cooled cooling fingers. The model was set up by means of the finite element method. Materials with different thermal conductivity were modelled and the results obtained with the mathematical model were compared with experimental data. In every case, it was found excellent agreement between the experimental data and the model computations.


Author(s):  
S. V. Tiunov ◽  
A. N. Skrypnik ◽  
G. S. Marshalova ◽  
V. M. Gureev ◽  
I. A. Popov ◽  
...  

Air cooling devices are heat exchange units that are widely used in practice. However, they have a number of disadvantages due to the low value of the heat transfer coefficient from the air and the high resistance of finned tube bundles, which leads to large dimensions and the metal content of the device itself, to the need to develop a high power ventilator drive, but also to the need to demonstrate reduced energy efficiency. The objective of the present work is to determine optimal geometric sizes of finned flat heat exchange tubes manufactured by the techniques of extrusion and deforming cutting that reduce the weight and size characteristics of the heat exchange section of air cooling devices. The experimental studies of seven various samples of heat exchange sections, being different in fin pitch and height, tube section width, flat tube height and a number of inner channels, have determined the performance of each section with the use of the following criteria: thermal power, thermal efficiency, specific thermal heat transfer resistance, M. V. Kirpichev and V. M. Antuf’ev’s criteria. The obtained experimental data and the analysis of the passive method of enhancement in the near-wall area of the heat transfer surface finned by deforming cutting has shown that sample No 5 has maximum value of the performance criteria when the maximum height of a fin is 0.008 m and the minimum pitch of a fin is 0.0025 m over the investigated sample range. Thus, when the sizes of an oil air cooling device are maintained by using the amended heat transfer section of sample No 5, the amount of removed heat can be increased or the mass and dimensions of the device can be decreased while maintaining thermal power and, as a result, the power consumption for pumping can be decreased and the thermal-hydraulic performance of the device as a whole can be increased.


Author(s):  
Gabriel Plascencia ◽  
Torstein A. Utigard ◽  
Juliana Gutiérrez ◽  
David Jaramillo ◽  
Vicente Mayagoitia ◽  
...  
Keyword(s):  

1998 ◽  
Vol 120 (1) ◽  
pp. 98-105 ◽  
Author(s):  
R. L. Webb ◽  
M. D. Gilley ◽  
V. Zarnescu

Thermoelectric coolers (TEC) are potentially ideal devices to cool electronic components or small electronic enclosures. However, practical heat exchange can limit the COP and restrict the range of useful applications. The TEC must reject heat from the hot side to the ambient, which is typically air. The COP can be increased by reducing the hot-side temperature, which requires a high-performance heat exchanger. An understanding of the heat sources in the TEC is presented, and relations are presented to define the hot-side thermal resistance required to operate at desired operating conditions. A novel air-cooled thermosyphon reboiler-condenser system has been developed that promises significantly higher COP for thermoelectric coolers than is possible with current heat exchange technology. This heat exchanger design concept is described and compared to conventional technology.


2020 ◽  
Author(s):  
Eldar Rinatovich Abdeev ◽  
Rail Idiatovich Saitov ◽  
Rinat Gazizyanovich Abdeev ◽  
Emil Irikovich Shavaleev

An analysis of the composition of the heat-exchange equipment at the petrochemical plants reveals that nominally more than 30% (and by weight about 50% of the total equipment) is heat-exchange equipment, including air-cooled units requiring replacement and reconstruction as a result of the end of their service life or corrosion erosion wear. Therefore, work aimed at improving the effectiveness of ABO is relevant. The existing problem of reducing the efficiency of air cooling in hot calm weather is compounded by the need for short-term humidification using a humidifier mounted directly behind the fan wheel when the air enters the diffuser. This dramatically increases the processes of corrosion and the formation of deposits on the surface of finned tubes (scale, fluff and dust). We have carried out a set of computational and experimental studies to evaluate the thermal efficiency of small-sized ABOs of various designs using a universal experimental industrial bench. The results of studies have established that vertical-cylindrical ABO designs are more energy-efficient and less metal-intensive compared to typical horizontal ones and allow for the influx of cold atmospheric air to the ABO inlet during the hot season. Keywords: air cooler; heat transfer coefficient; thermal efficiency; design of a vertical cylindrical air-cooling apparatus; involute profile layout


Sign in / Sign up

Export Citation Format

Share Document