scholarly journals Diffusion and Quantum Well Intermixing

Author(s):  
Thamer Tabbakh

Diffusion or intermixing is the movement of particles through space. It primarily occurs in every form of matter because of thermal motion. Atom diffusion and intermixing can also happen in crystalline semiconductors whereby the atoms that are diffusing and intermixing move from one side of the lattice to the adjacent one in the crystal semiconductor. Atom diffusion, which may also involve defects (including native and dopant), is at the core of processing of semiconductors. The stages involved in semiconductor processing are growth, followed by post-growth, and then the construction stage comes last. The control of every aspect of diffusion is necessary to accomplish the required goals, therefore creating a need for knowing what diffuses at any point in time. This chapter will briefly summarize the techniques that are in existence and are used to create diffused quantum wells (QWs). Also, it will outline the examples of QW semiconductor lasers and light-emitting diode (LED) by the utilization of inter-diffusion techniques and give recent examples.

2019 ◽  
Vol 9 (18) ◽  
pp. 3872
Author(s):  
Hussein S. El-Ghoroury ◽  
Mikhail V. Kisin ◽  
Chih-Li Chuang

Incorporation into the multi-layered active region of a semiconductor light-emitting structure specially designed intermediate carrier blocking layers (IBLs) allows efficient control over the carrier injection distribution across the structure’s active region to match the application-driven device injection characteristics. This approach has been successfully applied to control the color characteristics of monolithic multi-color light-emitting diodes (LEDs). We further exemplify the method’s versatility by demonstrating the IBL design of III-nitride multiple-quantum-well (MQW) light-emitting diode with active quantum wells uniformly populated at LED operational current.


2007 ◽  
Vol 17 (01) ◽  
pp. 81-84
Author(s):  
J. Senawiratne ◽  
M. Zhu ◽  
W. Zhao ◽  
Y. Xia ◽  
Y. Li ◽  
...  

Optical properties of green emission Ga 0.80 In 0.20 N/GaN multi-quantum well and light emitting diode have been investigated by using photoluminescence, cathodoluminescence, electroluminescence, and photoconductivity. The temperature dependent photoluminescence and cathodoluminescence studies show three emission bands including GaInN/GaN quantum well emission centered at 2.38 eV (~ 520 nm). The activation energy of the non-radiative recombination centers was found to be ~ 60 meV. The comparison of photoconductivity with luminescence spectroscopy revealed that optical properties of quantum well layers are strongly affected by the quantum-confined Stark effect.


2013 ◽  
Vol 38 (17) ◽  
pp. 3370 ◽  
Author(s):  
Horng-Shyang Chen ◽  
Yu-Feng Yao ◽  
Che-Hao Liao ◽  
Charng-Gan Tu ◽  
Chia-Ying Su ◽  
...  

2002 ◽  
Vol 722 ◽  
Author(s):  
Mee-Yi Ryu ◽  
C. Q. Chen ◽  
E. Kuokstis ◽  
J. W. Yang ◽  
G. Simin ◽  
...  

AbstractWe present the results on investigation and analysis of photoluminescence (PL) dynamics of quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by a novel pulsed metalorganic chemical vapor deposition (PMOCVD). The emission peaks in both AlInGaN epilayers and MQWs show a blueshift with increasing excitation power density. The PL emission of quaternary samples is attributed to recombination of carriers/excitons localized at band-tail states. The PL decay time increases with decreasing emission photon energy, which is a characteristic of localized carrier/exciton recombination due to alloy disorder. The obtained properties of AlInGaN materials grown by a PMOCVD are similar to those of InGaN. This indicates that the AlInGaN system is promising for ultraviolet applications such as the InGaN system for blue light emitting diode and laser diode applications.


2005 ◽  
Vol 97 (12) ◽  
pp. 123105 ◽  
Author(s):  
E. Dupont ◽  
M. Byloos ◽  
T. Oogarah ◽  
I. Sproule ◽  
H. C. Liu

1995 ◽  
Vol 7 (11) ◽  
pp. 1270-1272 ◽  
Author(s):  
I.J. Fritz ◽  
J.F. Klem ◽  
M.J. Hafich ◽  
A.J. Howard ◽  
H.P. Hjalmarson

NANO ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1950153 ◽  
Author(s):  
Je Won Kim

Three-dimensional structure and growth can be more appropriately realized through a nanomanufacturing process that uses a mask patterning and etching process. Unlike conventional single-wavelength semiconductor lighting sources, the uniformity and reproducibility of the nanomolding process in this study enable multiple wavelengths to be used in lighting and display applications. This study shows the various wavelength characteristics through a newly developed nanomold and its nanorod array and also proves the feasibility of a white light without phosphors for emitting multiple wavelengths from a single chip. In this study, we proposed the possibility of wavelength control by fabricating a light-emitting diode with a three-dimensional nanostructure, using a nanomold with semiconductor processing.


Sign in / Sign up

Export Citation Format

Share Document