scholarly journals REPLY TO COMMENTS FROM S.G. SKUBLOV, A.V. BEREZIN, AND L.I. SALIMGARAEVA ON THE ARTICLE AUTHORED BY M.V. MINTS AND K.A. DOKUKINA – THE BELOMORIAN ECLOGITE PROVINCE (EASTERN FENNOSCANDIAN SHIELD, RUSSIA): MESO-NEOARCHEAN OR LATE PALEOPROTEROZOIC?

2021 ◽  
Vol 12 (3) ◽  
pp. 662-667
Author(s):  
M. V. Mints ◽  
K. A. Dokukina

In their research, the authors of the comments have focused on the Late Paleoproterozoic rims of zircons, but ignored many important details of their own data. Their comments are based on a misconception that eclogite zircons have unique geochemical (REE, Th/U) and isotopic (Lu-Hf, δ18O) characteristics that do not depend on rock types and pressure rates (that were high or ultrahigh) during metamorphism. This idea leads to false unambiguous dating of the eclogite facies metamorphism based on single samples of the rocks.

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1029
Author(s):  
Oleg I. Volodichev ◽  
Oleg A. Maksimov ◽  
Tatiana I. Kuzenko ◽  
Alexander I. Slabunov

Early Precambrian retrogressed eclogites are abundant in the central and northern parts of the Belomorian Province of the Fennoscandian Shield (Gridino + Keret and Salma + Kuru-Vaara study areas, respectively). Older and younger eclogites are recognized and their Archean and Paleoproterozoic ages are argued. Archean eclogites are intensely retrogressed and occur in amphibolite boudins in the tonalite-trondhjemite-granodiorite (TTG) gneiss matrix of the Archean Gridino eclogite-bearing mélange. Less retrogressed Paleoproterozoic eclogites form patches in mafic dikes and some amphibolite boudins; their Paleoproterozoic age is supported by U-Pb/SIMS data on zircons depleted in heavy rare earth elements (REE) with omphacite, garnet, and kyanite inclusions, and Sm-Nd and Lu-Hf mineral isochrons. Archean eclogites contain Archean heavy rare-earth elements (REE)-depleted zircons with garnet and zoisite inclusions and Archean garnets. No omphacite inclusions were found in these zircons, and this fact was considered as evidence against the existence of Archean eclogites. This study reports on the first finding of omphacite (23–25% Jd) inclusions in 2.68 Ga metamorphic zircons from eclogites from the Gridino eclogite-bearing mélange. The zircons are poorly enriched in heavy REE and display a weak negative Eu-anomaly but a poor positive Ce-anomaly typical of eclogitic zircons. Thus, zircons with these decisive features provide evidence for an Archean eclogite-facies metamorphism.


2016 ◽  
Author(s):  
David J. Young ◽  
◽  
Daniele Regis ◽  
Clare Warren ◽  
Andrew R.C. Kylander-Clark

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Kong ◽  
Xueyuan Qi ◽  
Wentian Mi ◽  
Xiaoxin Dong

We report zircon U–Pb ages and Lu-Hf isotopic data from two sample of the retrograded eclogite in the Chicheng area. Two groups of the metamorphic zircons from the Chicheng retrograded eclogite were identified: group one shows characteristics of depletion in LREE and flat in HREE curves and exhibit no significant Eu anomaly, and this may imply that they may form under eclogite facies metamorphic condition; group two is rich in HREE and shows slight negative Eu anomaly indicated that they may form under amphibolite facies metamorphic condition. Zircon Lu-Hf isotopic of εHf from the Chicheng eclogite has larger span range from 6.0 to 18.0, which suggests that the magma of the eclogite protolith may be mixed with partial crustal components. The peak eclogite facies metamorphism of Chicheng eclogite may occur at 348.5–344.2 Ma and its retrograde metamorphism of amphibolite fancies may occur at ca. 325.0 Ma. The Hongqiyingzi Complex may experience multistage metamorphic events mainly including Late Archean (2494–2448 Ma), Late Paleoproterozoic (1900–1734 Ma, peak age = 1824.6 Ma), and Phanerozoic (495–234 Ma, peak age = 323.7 Ma). Thus, the metamorphic event (348.5–325 Ma) of the Chicheng eclogite is in accordance with the Phanerozoic metamorphic event of the Hongqiyingzi Complex. The eclogite facies metamorphic age of the eclogite is in accordance with the metamorphism (granulite facies or amphibolite facies) of its surrounding rocks, which implied that the tectonic subduction and exhumation of the retrograded eclogite may cause the regional metamorphism of garnet biotite plagioclase gneiss.


2007 ◽  
Vol 153 (1-2) ◽  
pp. 29-45 ◽  
Author(s):  
Tobias Hermansson ◽  
Michael B. Stephens ◽  
Fernando Corfu ◽  
Jenny Andersson ◽  
Laurence Page

Lithos ◽  
2000 ◽  
Vol 51 (4) ◽  
pp. 305-330 ◽  
Author(s):  
A Kühn ◽  
J Glodny ◽  
K Iden ◽  
H Austrheim

2009 ◽  
Vol 147 (3) ◽  
pp. 339-362 ◽  
Author(s):  
MICHAEL BRÖCKER ◽  
REINER KLEMD ◽  
ELLEN KOOIJMAN ◽  
JASPER BERNDT ◽  
ALEXANDER LARIONOV

AbstractU–Pb zircon geochronology and trace element analysis was applied to eclogites and (ultra)high-pressure granulites that occur as volumetrically subordinate rock bodies within orthogneisses of the Orlica-Śnieżnik complex, Bohemian Massif. Under favourable circumstances such data may help to unravel protolith ages and yet-undetermined aspects of the metamorphic evolution, for example, the time span over which eclogite-facies conditions were attained. By means of ion-probe and laser ablation techniques, a comprehensive database was compiled for samples collected from prominent eclogite and granulite occurrences. The 206Pb/238U dates for zircons of all samples show a large variability, and no single age can be calculated. The protolith ages remain unresolved due to the lack of coherent age groups at the upper end of the zircon age spectra. The spread in apparent ages is interpreted to be mainly caused by variable and possibly multi-stage Pb-loss. Further complexities are added by metamorphic zircon growth and re-equilibration processes, the unknown relevance of inherited components and possible mixing of different aged domains during analysis. A reliable interpretation of igneous crystallization ages is not yet possible. Previous studies and the new data document the importance of a Carboniferous metamorphic event at c. 340 Ma. The geological significance of this age group is controversial. Such ages have previously either been related to peak (U)HP conditions, the waning stages of eclogite-facies metamorphism or the amphibolite-facies overprint. This study provides new arguments for this discussion because, in both rock types, metamorphic zircon is characterized by very low total REE abundances, flat HREE patterns and the absence of an Eu anomaly. These features strongly suggest contemporaneous crystallization of zircon and garnet and strengthen interpretations proposing that the Carboniferous ages document late-stage eclogite-facies metamorphism, and not amphibolite-facies overprinting.


2020 ◽  
Author(s):  
Santanu Kumar Bhowmik ◽  
Mayashri Rajkakati

<p>Despite significant progress in our understanding of the thermal history of ultra-high pressure (UHP) metamorphosed oceanic eclogite, the mechanisms of detachment and exhumation of these rocks in the subduction channel are still debatable. Opinions vary from their exhumation as detached blocks due to circulation in a weak and loose serpentinite mélange to coherent bodies in large-scale imbricated slices. In this study, we integrate published metamorphic P-T path and peak P-T data with new metamorphic reconstruction of oceanic eclogites from two locations in the Nagaland Ophiolite Complex (NOC), NE India to establish its UHP signature and complicated  multistage exhumation history. Previous studies reveal the NOC to be the largest exposed remnant of an array of HP/LT metamorphic rocks within the eastern Neo-Tethys with the subduction burial-exhumation cycle of eclogites being bracketed between ca. 205 and 172 Ma. In both the locations near Thewati and Mokie villages, the eclogites occur as ~5 to ~50 m long and ~2-5 m wide tectonic lenses within a lawsonite blueschist facies metamorphosed package of oceanic basalt-limestone-radiolarian chert (peak P-T at ~11.5 kbar, ~340<sup>o</sup>C).  The Thewati eclogite records a clockwise (CW) P-T path of evolution with an epidote blueschist facies prograde burial at ~18.8 kbar, 555°C, peak epidote eclogite  facies metamorphism at ~25–28 kbar, ~650°C and a two stage exhumation: an early one along a steep dP/dT gradient in amphibole-eclogite facies at ~18.3 kbar, 630°C and a later one along a gentler dP/dT gradient through epidote blueschist facies to the transitional lawsonite blueschist and greenschist facies metamorphic conditions at ~6 kbar, 300°C. In the Mokie locality, thin discontinuous stringers of highly magnesian (Mg# = 73) and eclogite facies altered basaltic crust (peak P-T at ~23.8 kbar and ~555°C) separate the eclogitic core (Mg# = 44) from the blueschist host. The Mokie eclogite core records an epidote blueschist facies prograde burial at ~12.5 kbar, ~510°C, peak UHP epidote eclogite facies metamorphism at ~32.0 kbar, ~700°C, an initial, eclogite facies exhumation at ~17.3 kbar, 560<sup>o</sup>C that retraces the prograde burial path, but at a higher temperature, a subsequent phase of eclogite facies prograde heating and the final exhumation and cooling at metamorphic conditions transitional between lawsonite blueschist and prehnite-pumpellyite facies. We interpret the P-T history of the Nagaland blueschists and eclogites in terms of a Jurassic-aged ultra-cool (thermobaric ratio at metamorphic peak between ~220<sup>o</sup>C/GPa and ~300<sup>o</sup>C/GPa) intra-oceanic subduction system within the Neo-Tethys, subduction burial of the Mokie eclogite core to ~100 kms of depth, putting it in the select category of rare global UHP oceanic eclogite facies metamorphism during the cold mature stage of subduction and a change in its exhumation style from an initial buoyancy-driven material transport in a rheologically weak and fluidised subduction channel, often involving prograde heating of partially exhumed rocks to later thrust stacking and tectonic mixing of the eclogites from different crustal levels with the cooler, prograde blueschists at shallower crustal levels (P~5-6 kbar). This stage two exhumation led to the assembly of the Nagaland Accretionary Complex.</p>


Sign in / Sign up

Export Citation Format

Share Document