scholarly journals Chitosan-based inks: 3D printing and bioprinting strategies to improve shape fidelity, mechanical properties, and biocompatibility of 3D scaffolds

Biomecánica ◽  
2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Ana Mora Boza ◽  
Malgorzata K. Wlodarczyk-Biegun ◽  
Aránzazu Del Campo ◽  
Blanca Vázquez-Lasal ◽  
Julio San Román
Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1832 ◽  
Author(s):  
Chen-Guang Liu ◽  
Yu-Ting Zeng ◽  
Ranjith Kankala ◽  
Shan-Shan Zhang ◽  
Ai-Zheng Chen ◽  
...  

Some basic requirements of bone tissue engineering include cells derived from bone tissues, three-dimensional (3D) scaffold materials, and osteogenic factors. In this framework, the critical architecture of the scaffolds plays a crucial role to support and assist the adhesion of the cells, and the subsequent tissue repairs. However, numerous traditional methods suffer from certain drawbacks, such as multi-step preparation, poor reproducibility, high complexity, difficulty in controlling the porous architectures, the shape of the scaffolds, and the existence of solvent residue, which limits their applicability. In this work, we fabricated innovative poly(lactic-co-glycolic acid) (PLGA) porous scaffolds, using 3D-printing technology, to overcome the shortcomings of traditional approaches. In addition, the printing parameters were critically optimized for obtaining scaffolds with normal morphology, appropriate porous architectures, and sufficient mechanical properties, for the accommodation of the bone cells. Various evaluation studies, including the exploration of mechanical properties (compressive strength and yield stress) for different thicknesses, and change of structure (printing angle) and porosity, were performed. Particularly, the degradation rate of the 3D scaffolds, printed in the optimized conditions, in the presence of hydrolytic, as well as enzymatic conditions were investigated. Their assessments were evaluated using the thermal gravimetric analyzer (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). These porous scaffolds, with their biocompatibility, biodegradation ability, and mechanical properties, have enabled the embryonic osteoblast precursor cells (MC3T3-E1), to adhere and proliferate in the porous architectures, with increasing time. The generation of highly porous 3D scaffolds, based on 3D printing technology, and their critical evaluation, through various investigations, may undoubtedly provide a reference for further investigations and guide critical optimization of scaffold fabrication, for tissue regeneration.


2019 ◽  
Author(s):  
JiUn Lee ◽  
SooJung Chae ◽  
Hyeongjin Lee ◽  
GeunHyung Kim
Keyword(s):  

2016 ◽  
Vol 5 (01) ◽  
pp. 4723 ◽  
Author(s):  
Bhusnure O. G.* ◽  
Gholve V. S. ◽  
Sugave B. K. ◽  
Dongre R. C. ◽  
Gore S. A. ◽  
...  

Many researchers have attempted to use computer-aided design (C.A.D) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (D.D.S) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and D. D. Ss have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. 3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fuelled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. Until recently, tablet designs had been restricted to the relatively small number of shapes that are easily achievable using traditional manufacturing methods. As 3D printing capabilities develop further, safety and regulatory concerns are addressed and the cost of the technology falls, contract manufacturers and pharmaceutical companies that experiment with these 3D printing innovations are likely to gain a competitive edge. This review compose the basics, types & techniques used, advantages and disadvantages of 3D printing


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4164
Author(s):  
Elizabeth Diederichs ◽  
Maisyn Picard ◽  
Boon Peng Chang ◽  
Manjusri Misra ◽  
Amar Mohanty

Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1708
Author(s):  
Wenqiang Hua ◽  
Qilang Lin ◽  
Bo Qu ◽  
Yanyu Zheng ◽  
Xiaoying Liu ◽  
...  

Photosensitive resins used in three-dimensional (3D) printing are characterized by high forming precision and fast processing speed; however, they often possess poor mechanical properties and heat resistance. In this study, we report a photocurable bismaleimide ink with excellent comprehensive performance for stereolithography (SLA) 3D printing. First, the main chain of bismaleimide with an amino group (BDM) was synthesized, and then, the glycidyl methacrylate was grafted to the amino group to obtain the bismaleimide oligomer with an unsaturated double bond. The oligomers were combined with reaction diluents and photo-initiators to form photocurable inks that can be used for SLA 3D printing. The viscosity and curing behavior of the inks were studied, and the mechanical properties and heat resistance were tested. The tensile strength of 3D-printed samples based on BDM inks could reach 72.6 MPa (166% of that of commercial inks), glass transition temperature could reach 155 °C (205% of that of commercial inks), and energy storage modulus was 3625 MPa at 35 °C (327% of that of commercial inks). The maximum values of T-5%, T-50%, and Tmax of the 3D samples printed by BDM inks reached 351.5, 449.6, and 451.9 °C, respectively. These photocured BDM inks can be used to produce complex structural components and models with excellent mechanical and thermal properties, such as car parts, building models, and pipes.


2019 ◽  
Vol 254 ◽  
pp. 01018
Author(s):  
František Bárnik ◽  
Milan Vaško ◽  
Milan Sága ◽  
Marián Handrik ◽  
Alžbeta Sapietová

By 3D printing it is possible to create different structures with different fiber-laying directions. These structures can be created depending on the type of 3D printer and its software. The Mark Two printer allows printing Onyx, a material based on nylon in combination with microcarbon fibers. Onyx can be used alone or reinforced with kevlar, glass or carbon fibers. This article deals with 3D printing and evaluation of mechanical properties of printed samples.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Sign in / Sign up

Export Citation Format

Share Document