scholarly journals MEASUREMENT OF WIND POWER AND ENERGY USING AN ANEMOMETER WITHOUT MOVING PARTS

2021 ◽  
Vol 25 (4) ◽  
pp. 160-162
Author(s):  
Bojan Vujičić ◽  
Boris Ličina ◽  
Platon Sovilj ◽  
Vladimir Vujičić

The paper deals with the application of a newly developed anemometer without moving parts. It is digitized and has built-in electronics that convert the vibrations of two aluminum fixed frames into two digital signals: one, which shows the strength (speed absolute value)) of the wind, and the other, which shows its direction. Both of these signals are used to calculate wind power and energy. Earlier works have shown that the two-bit stochastic digital measurement method overcomes (eliminates) the problem of the offset of the analog adder. The authors of this paper apply this idea to the digital output of the sensor, where the role of the offset of the analog adder is taken over by the integral nonlinearity of the digital output of the anemometer. The first step in this direction is digitally dithering the sensor output. This principle is presented in detail, as well as a rough estimate of the accuracy gain in measuring wind energy. The obtained result shows that the accuracy in measuring wind energy is not worse than the limit accuracy in the case of a cup anemometer that generates sinusoidal voltage.

2013 ◽  
Vol 805-806 ◽  
pp. 420-423
Author(s):  
Guan Jun Ding ◽  
Bang Kui Fan ◽  
Teng Long ◽  
Hai Bin Lan ◽  
Jing Wang

Along with the concern about environmental pollution and global warming, the development of wind energy has rapidly progressed over the last decade by the improving in the technology and the provision of government energy policy. In view of the intermittent property of wind energy causing variability, unpredictability and uncertainty, this paper analyzes the related technical features of wind energy, e.g., power curve, wind speed, wind power and energy, to provide the further reference for analyzing the impacts of wind energy on power system in depth. First of all, wind turbine, the key part of wind energy, is discussed, including its components and power curve. Second, wind speed, the key factor for calculating wind power and energy, is analyzed and derived in detail. On the basis of wind speed distribution, two types of wind speed are calculated, i.e., the arithmetic mean wind speed and the cubic root cube wind speed. Then, wind power and energy are presented and calculated. Finally, the related conclusions are drawn.


Author(s):  
Michael S Okundamiya

The rising demands for a sustainable energy system have stimulated global interests in renewable energy sources. Wind is the fastest growing and promising source of renewable power generation globally. The inclusion of wind power into the electric grid can severely impact the monetary cost, stability and quality of the grid network due to the erratic nature of wind. Power electronics technology can enable optimum performance of the wind power generation system, transferring suitable and applicable energy to the electricity grid. Power electronics can be used for smooth transfer of wind energy to electricity grid but the technology for wind turbines is influenced by the type of generator employed, the energy demand and the grid requirements. This paper investigates the constraints and standards of wind energy conversion technology and the enabling power electronic technology for integration to electricity grid.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Lorenzo Donadio ◽  
Jiannong Fang ◽  
Fernando Porté-Agel

In the past two decades, wind energy has been under fast development worldwide. The dramatic increase of wind power penetration in electricity production has posed a big challenge to grid integration due to the high uncertainty of wind power. Accurate real-time forecasts of wind farm power outputs can help to mitigate the problem. Among the various techniques developed for wind power forecasting, the hybridization of numerical weather prediction (NWP) and machine learning (ML) techniques such as artificial neural networks (ANNs) are attracting many researchers world-wide nowadays, because it has the potential to yield more accurate forecasts. In this paper, two hybrid NWP and ANN models for wind power forecasting over a highly complex terrain are proposed. The developed models have a fine temporal resolution and a sufficiently large prediction horizon (>6 h ahead). Model 1 directly forecasts the energy production of each wind turbine. Model 2 forecasts first the wind speed, then converts it to the power using a fitted power curve. Effects of various modeling options (selection of inputs, network structures, etc.) on the model performance are investigated. Performances of different models are evaluated based on four normalized error measures. Statistical results of model predictions are presented with discussions. Python was utilized for task automation and machine learning. The end result is a fully working library for wind power predictions and a set of tools for running the models in forecast mode. It is shown that the proposed models are able to yield accurate wind farm power forecasts at a site with high terrain and flow complexities. Especially, for Model 2, the normalized Mean Absolute Error and Root Mean Squared Error are obtained as 8.76% and 13.03%, respectively, lower than the errors reported by other models in the same category.


2021 ◽  
pp. 014459872199226
Author(s):  
Yu-chi Tian ◽  
Lei kou ◽  
Yun-dong Han ◽  
Xiaodong Yang ◽  
Ting-ting Hou ◽  
...  

With resource crisis and environmental crisis increasingly grim, many countries turn the focus to pollution-free and renewable wind energy resources, which are mainly used for offshore wind power generation, seawater desalination and heating, etc., on the premise that the characteristics of resources are fully grasped. In this study, the evaluation of offshore wind energy in offshore waters in China, as well as the advantages and disadvantages of existing studies were overviewed from four aspects: the spatial-temporal characteristics of wind energy, wind energy classification, the short-term forecast of wind energy and the long-term projection of wind energy, according to the research content and the future considerations about wind energy evaluation (evaluation of wind energy on islands and reefs, the impact of wind energy development on human health) were envisaged, in the hope of providing a scientific basis for the site selection and business operation ‘or military applications’ here (after business operation), etc. of wind energy development, ‘aritime navigation against environmental construction,’ here and also contributing to the sustainable development and health of human beings.


2014 ◽  
Vol 526 ◽  
pp. 211-216
Author(s):  
Qiong Ying Lv ◽  
Yu Shi Mei ◽  
Xi Jia Tao

As the trend of large-scale wind Power, People pay more attention to wind energy, which as a clean, renewable energy. Traditional unarmed climbing and crane lifting has been unable to meet the requirements of the equipment maintenance. Magnetic climb car can automatically crawl along the wall of the steel tower, the maintenance equipment and personnel can be sent to any height of the tower. The quality of the magnetic wall-climbing car is 550kg, which can carry 1.3 tons load. In this paper completed the magnetic wall-climbing car design and modeling, mechanical analysis in static and dynamic, obtained with the air gap and Magnetic Force curves. The application shows that the magnetic wall-climbing car meets the reliable adsorption, heavy-duty operation, simple operation etc..


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Julius Mwaniki ◽  
Hui Lin ◽  
Zhiyong Dai

The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS) must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG) WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.


2009 ◽  
Vol 15 (1) ◽  
pp. 25-36
Author(s):  
Branko Blazevic

In this paper, the author focuses on the fundamental hypothesis that the adoption of a concept of regional sustainable development and the use of renewable energy sources are preconditions to organising an acceptable regional tourism offering based on an eco-philosophy The renewable development of tourism regions is the basic framework for research regarding opportunities for introducing renewable energy sources such as hydro energy, wind power, solar energy, geothermal energy, and biomass energy. The purpose of this paper is to indicate the real opportunities that exist for substituting conventional energy sources with renewable ones and the role of renewables in regional development from economic, environmental and sociological viewpoints. It should also be noted that renewable energy sources have a strong regional importance and can contribute significantly to local employment.


Sign in / Sign up

Export Citation Format

Share Document