scholarly journals Análisis del efecto de variables ambientales en la estimación de la erosionabilidad (Factor K) = Analysis of the Effect of Environmental Variables on the Soil Erodibility Estimation (K Factor)

Author(s):  
Pedro Perez Cutillas ◽  
Gonzalo G. Barberá ◽  
Carmelo Conesa García

El objetivo principal de este trabajo se centra en la determinación y análisis de las variables ambientales que influyen en las divergencias de las estimaciones de erosionabilidad a partir de dos métodos, aplicando tres algoritmos de estimación del Factor K. La exploración de esta información permite conocer el peso que ejerce el origen de los datos de entrada a los modelos en el cómputo de erosionabilidad y qué importancia tiene en función del algoritmo elegido para la estimación del Factor K. Los resultados muestran que las pendientes, así como los índices de vegetación (NDVI) y de composición mineralógico (IOI) obtenidos mediantes técnicas de teledetección han   mostrado los valores de asociación más elevados entre ambos métodos.The main goal of this work is to determine and analyze the influence of environmental variables on the changes of two erodibility methods, through the application of three estimation algorithms of K Factor. The analysis of this information allows knowing the significance of the input data to the models in the erodibility estimation, and likewise the consequence of the algorithm selected for the estimation of K Factor. The results show that the slopes, as well as the vegetation index (NDVI) and the mineralogical composition index (IOI), generated both by remote sensing techniques, have shown the highest values of association between methods.

2021 ◽  
Vol 13 (20) ◽  
pp. 4106
Author(s):  
Shuai Wang ◽  
Mingyi Zhou ◽  
Qianlai Zhuang ◽  
Liping Guo

Wetland ecosystems contain large amounts of soil organic carbon. Their natural environment is often both at the junction of land and water with good conditions for carbon sequestration. Therefore, the study of accurate prediction of soil organic carbon (SOC) density in coastal wetland ecosystems of flat terrain areas is the key to understanding their carbon cycling. This study used remote sensing data to study SOC density potentials of coastal wetland ecosystems in Northeast China. Eleven environmental variables including normalized difference vegetation index (NDVI), difference vegetation index (DVI), soil adjusted vegetation index (SAVI), renormalization difference vegetation index (RDVI), ratio vegetation index (RVI), topographic wetness index (TWI), elevation, slope aspect (SA), slope gradient (SG), mean annual temperature (MAT), and mean annual precipitation (MAP) were selected to predict SOC density. A total of 193 soil samples (0–30 cm) were divided into two parts, 70% of the sampling sites data were used to construct the boosted regression tree (BRT) model containing three different combinations of environmental variables, and the remaining 30% were used to test the predictive performance of the model. The results show that the full variable model is better than the other two models. Adding remote sensing-related variables significantly improved the model prediction. This study revealed that SAVI, NDVI and DVI were the main environmental factors affecting the spatial variation of topsoil SOC density of coastal wetlands in flat terrain areas. The mean (±SD) SOC density of full variable models was 18.78 (±1.95) kg m−2, which gradually decreased from northeast to southwest. We suggest that remote sensing-related environmental variables should be selected as the main environmental variables when predicting topsoil SOC density of coastal wetland ecosystems in flat terrain areas. Accurate prediction of topsoil SOC density distribution will help to formulate soil management policies and enhance soil carbon sequestration.


2015 ◽  
Vol 3 (2) ◽  
pp. 58-67 ◽  
Author(s):  
Jan Rudolf Karl Lehmann ◽  
Keturah Zoe Smithson ◽  
Torsten Prinz

Remote sensing techniques have become an increasingly important tool for surveying archaeological sites. However, budgeting issues in archaeological research often limit the application of satellite or airborne imagery. Unmanned aerial systems (UAS) provide a flexible, quick, and more economical alternative to commonly used remote sensing techniques. In this study, the buried features of the archaeological site of the Kleinburlo monastery, near Münster, Germany, were identified using high-resolution color–infrared (CIR) images collected from a UAS platform. Based on these CIR images, a modified normalised difference vegetation index (NDVIblue) was calculated, showing reflectance spectra of vegetation anomalies caused by water stress. In the presented study, the vegetation growing on top of the buried walls was better nourished than the surrounding plants because very wet conditions over the days previous to data collection caused higher levels of water stress in the surrounding water-drenched land. This difference in water stress was a good indicator for detecting archaeological remains.


2012 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Peter Dambach ◽  
Vanessa Machault ◽  
Jean-Pierre Lacaux ◽  
Cécile Vignolles ◽  
Ali Sié ◽  
...  

2021 ◽  
Vol 52 (3) ◽  
pp. 620-625
Author(s):  
Y. K. Al-Timimi

Desertification is one of the phenomena that threatening the environmental, economic, and social systems. This study aims to evaluate and monitor desertification in the central parts of Iraq between the Tigris and Euphrates rivers through the use of remote sensing techniques and geographic information systems. The Normalized difference vegetation index NDVI and the crust index CI were used, which were applied to two of the Landsat ETM + and OLI satellite imagery during the years 1990 and 2019. The research results showed that the total area of ​​the vegetation cover was 2620 km2 in 1990, while there was a marked decrease in the area Vegetation cover 764 km2 in 2019, accounting for 34.8% (medium desertification) and 10.2% (high desertification), respectively. Also, the results showed that sand dunes occupied an area of ​​767 km2 in 1990, while the area of ​​sand dunes increased to 1723 km2 in 2019, with a rate of 10.2%) medium desertification (and 22.9% (severe desertification), respectively. It was noted that the overall rate of decrease in vegetation cover was 21.33 km2year-1 while the overall rate of increase in ground erosion in the area is 10.99 km2year-1.


Author(s):  
K. Narmada ◽  
K. Annaidasan

Aim: To study the carbon storage potential of Muthupet mangroves in Tamil Nadu using Remote sensing techniques. Place and Duration: The study is carried out in Muthupet Mangroves for the years 2000, 2010 and 2017. Methodology: In this study the remote sensing images were processed using the ERDAS and ArcGIS software and the NDVI (Normalized Difference Vegetation Index) has also been applied to estimate the quantity of carbon sequestration capability for the Avicennia marina mangrove growing in the Muthupet region for the period 2000-2017. The formula proposed by Lai [10] was used to calculate the carbon stock using geospatial techniques. Results: The results show that the mangroves in Muthupet region has NDVI values between -0.671 and 0.398 in 2000, -0.93 and 0.621 in 2010 and -0.66 and 0.398 in 2017. The observation indicates the reliability and validity of the aviation remote sensing with high resolution and with near red spectrum experimented in this research for estimating the the Avicennia marina (Forsk.) mangrove growing in this region. The estimated quantity of carbon di oxide sequestrated by the mangrove was about 1475.642 Mg/Ha in 2000, 3646.312 Mg/Ha in 2010 and 1677.72 Mg/Ha in 2017. Conclusion: The capacity of the Avicennia marina growing in Muthupet region to sequestrate carbon show that it has a great potential for development and implementation. The results obtained in this research can be used as a basis for policy makers, conservationists, regional planners, and researchers to deal with future development of cities and their surroundings in regions of highly ecological and environmental sensitivity. Thus the finding shows that wetlands are an important ecological boon as it helps to control the impact of climate change in many different ways.


2019 ◽  
Vol 50 (3) ◽  
Author(s):  
R. K. Abdullatiff

A study was conducted to investigate the effect of the brick industry on the environmental system of these project soils of the brick factories in Alnahrawan district. Remote sensing techniques was used to study the relationship between the spectral reflectivity and the vegetative index on the one hand and some surface soil characters of the project and to determine the variation in vegetation cover for the same area and for two different periods.Ten sites were selected to study spectral reflectivity under similar geomorphological conditions near the brickworks project in the Anahrawan district with an area of 10,000 hectares. Soil samples were taken from the surface and at a depth of 0-30 cm. Some chemical and physical characters of research soil were analyzed in the soil department laboratories, college of Agriculture, Baghdad University.Several satellite images taken from the satellite Land sat (ETM) 2013 and another from same satellite in 1990 T.M to determining the change between the two periods. After obtaining remote sensing data (reflectivity and vegetation index).the correlation analysis was carried out between these data. It was observed that the soil salinity values were decreased due to the drainage that the area was confined between the Tigris River and the Diyala tributary which leads to good natural drainage.The attached tables indicate that thedigital numbers of the soil sampling sites in 2013 are highly significant correlated, While some of the characters did not show the use of this region industrially. After calculating the difference between the two images to determine the change. A 100% change was observed and the vegetation cover was sharply reduced between the two images. as well as the extension of the land of empty land, although these lands are still suitable for agriculture.


OENO One ◽  
2014 ◽  
Vol 48 (4) ◽  
pp. 247 ◽  
Author(s):  
Jorge R. Ducati ◽  
Magno G. Bombassaro ◽  
Jandyra M. G. Fachel

<p style="text-align: justify;"><strong>Aim</strong>: To use Remote Sensing imagery and techniques to differentiate categories of Burgundian vineyards.</p><p style="text-align: justify;"><strong>Methods and results</strong>: A sample of 201 vine plots or “climats” from the Côte d’Or region in Burgundy was selected, consisting of three vineyard categories (28 Grand Cru, 74 Premier Cru, and 99 Communale) and two grape varieties (Pinot Noir and Chardonnay). A mask formed by the polygons of these vine plots was made and projected on four satellite images acquired by the ASTER sensor, covering the Côte d’Or region in years 2002, 2003 (winter image), 2004 and 2006. Mean reflectances were extracted from pixels within each polygon for each of the nine spectral bands (visible and infrared) covered by ASTER. The database had a total of 797 reflectance spectra assembled over the four images. Statistical discriminant analysis of percentage classification accuracy was made separately for Côte de Nuits and Côte de Beaune, and for each year. Results showed that for individual years and Côtes, classification accuracy for vineyard category was as high as 73.7% (Beaune 2002) and as low as 66.7% (Beaune 2003). There were no significant differences in accuracy between spring, summer and winter images. Classification accuracy for grape variety in Côte de Beaune over the four study years was between 73.5% for Pinot Noir climats in 2004 and 91.9% for Chardonnay climats in 2006, including the winter image. Concerning the vegetation index NDVI, there were no significant differences between vineyard categories.</p><p style="text-align: justify;"><strong>Conclusions</strong>: Satellite data is shown to be functional to reveal vineyard quality. Spectral differences between categories of Burgundian vineyards are at least partially due to terroir characteristics, which are transmitted to vine and vine canopy.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This work indicates that Remote Sensing techniques can be used as an auxiliary tool for the monitoring of vineyard quality in established viticultural regions and for the study of quality potential in new regions.</p>


Irriga ◽  
2022 ◽  
Vol 1 (4) ◽  
pp. 722-729
Author(s):  
LEONCIO GONÇALVES RODRIGUES ◽  
ANA CÉLIA MAIA MEIRELES ◽  
CARLOS WAGNER OLIVEIRA

EMPREGO DO SENSORIAMENTO REMOTO PARA ANÁLISE DO USO E OCUPAÇÃO DO SOLO NO PERÍMETRO IRRIGADO VÁRZEAS DE SOUSA-PB     LEONCIO GONÇALVES RODRIGUES1; ANA CÉLIA MAIA MEIRELES2 E CARLOS WAGNER OLIVEIRA3   1Mestrando em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]. 2 Professora titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]  3 Professor titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]     1 RESUMO   O perímetro irrigado várzeas de Sousa (PIVAS) é um grande produtor de culturas como coco, banana, sorgo, algodão dentre outras. Tem grande importância para o desenvolvimento econômico da região do alto sertão da Paraíba. Possui características impares como a distribuição de água para todos os lotes por potencial gravitacional. Para a sustentabilidade do perímetro é necessário o monitoramento constante de suas áreas, para se poder desenvolver estratégias que auxiliam no desenvolvimento sustentável. Nesse sentido, o sensoriamento remoto é uma ferramenta ideal por permitir a obtenção rápida e precisa de informações sobre uma área, o que pode auxiliar na tomada de decisão. Partindo desse pressuposto, o objetivo deste trabalho é apresentar um conjunto de técnicas de sensoriamento que possibilitem o monitoramento de áreas irrigadas ou ambientais. Para tanto foi determinado do uso e ocupação do solo, o índice de vegetação por diferença normalizada (NDVI) e o índice de vegetação ajustado ao solo (SAVI) para o PIVAS. Onde se observou que as técnicas de sensoriamento remoto auxiliam na compreensão de áreas no espaço e tempo.   Palavras-chave: monitoramento, manejo, satélite.     RODRIGUES, L. G.; MEIRELES, A. C. M.; OLIVEIRA, C, W. USE OF REMOTE SENSING TO ANALYZE THE USE AND OCCUPANCY OF THE SOIL IN THE PERIMETER IRRIGATED VÁRZEAS DE SOUSA-PB.     2 ABSTRACT   The floodplain-irrigated perimeter of Sousa (PIVAS) is a major producer of crops such as coconut, banana, sorghum, cotton, among others. It is of great importance for the economic development of the upper wilderness region of Paraiba. It has unique characteristics such as water distribution to all lots by gravitational potential. For the sustainability of the perimeter, constant monitoring of its areas is necessary, to be able to develop strategies that help in sustainable development. In this sense, remote sensing is an ideal tool as it allows for quick and accurate obtaining information about an area, which can help in decision making. Based on this assumption, this work aims to present a set of sensing techniques that enable monitoring of irrigated or environmental areas. For this purpose, the normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) were determined for the PIVAS. Where it was observed that remote sensing techniques help understand areas in space and time.   Keywords: monitoring, management, satellite.


2018 ◽  
Vol 247 ◽  
pp. 00017
Author(s):  
Anna Szajewska

The use of remote sensing techniques allows obtaining information about processes that occur on the surface of the Earth. In the aspects of fire protection and forest protection, it is important to know a burnt area which was created as a result of a fire of the soil cover or a total fire. The knowledge of this area is necessary to assess losses. Remote sensing techniques allow obtaining images in various spectral ranges. Remote sensing satellites offer multi-band data. Mathematical operations that operate on values coming from different spectral ranges allow determining various remote sensing indicators. The manuscript presents the possibility of using the NDVI (Normalized Difference Vegetation Index) to classify the burnt area. The NDVI is relatively easy to obtain because it operates in the spectral ranges from 630 up to 915 nm, and is obtainable with one detector only. Thus, it can be obtained without any major problems using unmanned aerial vehicles, regardless of time and cloudiness, as is the case when acquiring satellite images. The manuscript describes experimental research and presents the results.


2022 ◽  
Vol 88 (1) ◽  
pp. 47-53
Author(s):  
Muhammad Nasar Ahmad ◽  
Zhenfeng Shao ◽  
Orhan Altan

This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion of food chain and gross domestic product for Sindh, Pakistan.


Sign in / Sign up

Export Citation Format

Share Document