Launching of Ships and Floating Structures from Horizontal Berth by Tipping Table

1998 ◽  
Vol 14 (04) ◽  
pp. 265-276
Author(s):  
Ivo Senjanovic

This review paper covers extensive investigations which were undertaken in order to verify the idea of launching of ships and other floating structures from a horizontal berth by a set of turning pads. This includes structural dynamics during launching, model tests and strength analysis of the structure and the launching system. The most important results, which were used for the design of the launching system, are presented. The preparation of a barge for side launching is described, and the full-scale measurement results are compared with the test results. The advantages of building ships and offshore structures on a horizontal berth are pointed out in the conclusion.

Author(s):  
Michael Lau

There are a variety of model ices and test techniques adopted by model test facilities. Most often, the clients would ask: “How well can you predict the full scale performance from your model test results?” Model-scale/full-scale correlation becomes an important litmus test to validate a model test technique and its results. This paper summarizes the model-scale/full-scale correlation performed on model test data generated at the National Research Council - Ocean, Coastal, and River Engineering’s (NRC-OCRE) test facility in St. John’s. This correlation includes ship performance predictions, i.e., resistance, propulsion and maneuvering. Selected works from NRC-OCRE on the USCGC icebreaker Healy, the CCGS icebreaker Terry-Fox, the CCGS R-Class icebreakers Pierre Radisson and Sir John Franklin and the CCGS icebreaker Louis S. St. Laurent were reviewed and summarized. The model tests were conducted at NRC-OCRE’s ice tank with the correct density (CD) EGADS model ice. This correlation is based on the concept that a “correlation friction coefficient” (CFC) can be used to predict full-scale ship icebreaking resistance from model test data. The CFCs have been compared for correlation studies using good-quality full-scale information for the five icebreaker models in the NRC-OCRE’s model test database. The review has shown a good agreement between NRCOCRE’s model test predictions and full-scale measurements. The resistance and power correlation were performed for five sets of full-scale data. Although there is substantial uncertainty on ice thickness and ice strength within the full scale data sets that contributes to data scattering, the data suggest a conservative estimate can be obtained to address reasonably this uncertainty by increasing the model prediction by 15% that envelopes most data points. Limited correlation for maneuvering in ice was performed for the USCGC icebreaker Healy. Selected test conditions from the sea trials were duplicated for the maneuvering tests and turning diameters were measured from the arcs of partial circles made in the ice tank. Performance predictions were then compared to the full-scale data previously collected. Despite some discrepancy in ice strength and power level between the model tests and sea trial, the model data agree well with the sea trial data except for three outliers. Otherwise, the maneuvering data show a good correlation between the model test and sea trial results.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Deirdre O’Donnell ◽  
Jimmy Murphy ◽  
Vikram Pakrashi

Abstract Response amplitude operator (RAO) curves are commonly employed to assess the dynamic behavior of floating offshore structures in the frequency domain. There are multiple methods used to obtain RAOs for numerical models, scaled physical models, and full-scale tests. While for numerical modeling many studies detail the precise methods used, the literature around experimental RAO curves often do not detail them or leave methodological information incomplete. There exists inadequate experimental evidence in assessing the differences in results obtained by following different RAO generation methods from scaled physical testing. This paper addresses this gap by comparing two most popular RAO generation methods: the energy spectra (ES) and the cross spectral auto spectra (CSAS) method. These are experimentally compared on scaled semisubmersible and spar-buoy platforms in an ocean wave basin. Differences of heave and pitch RAOs generated by different methods are investigated. A method for reasonably collating multiple tests to create a representative RAO is also presented. RAO amplitudes vary significantly and how they decay off beyond certain frequencies is dependent on the method adopted to create them. This variation can be a source of significant uncertainty for floating structures for further analysis, design, control, or repair. Some RAOs (e.g., pitch) are sensitive to scaling and should be considered when converting scaled tests to full-scale equivalent. Detailing methods of RAO generation and comparing approaches of developing them can be important for crucial decisions from scaled physical testing of floating structures at design/development stages.


Author(s):  
Gerco Hagesteijn ◽  
Patrick Hooijmans ◽  
Karola van der Meij

Model tests at ballast and design draught are used to convert the sea trial results from the ballast trial draught to the contractual design draught. Correlation allowances in model test results and their effect on the trial performance prediction are of major importance. Nowadays it is not only typical to verify the contract speed but also the EEDI certification requires a verification of the speed power performance of the vessel. The use of a to favorable CA-value may lead to attractive performance figures, but also leads to higher fuel consumption figures than expected. Furthermore the design point of the propeller is affected, which leads to a too low light running margin and in some cases to erosive cavitation. During a study, large spreading in the values of the correlation allowances for design draughts have been found for merchant vessels tested at different model test institutes, but at ballast trial draught the spreading is much less. Can it happen that some institutes select favorable correlations allowances on the basis of inaccurate trial data of shipyards? Or should we accept a large spreading in correlation allowances and have these indeed been confirmed by sea trials at design draught? This paper will present a discussion using the experience of a large full scale trial database as well as the accuracy of model and full scale tests.


1972 ◽  
Vol 14 (7) ◽  
pp. 75-79
Author(s):  
G. D. Thurman

This paper describes the pull-out manoeuvre as an indication of yaw motion stability. Results of model tests at the Admiralty Experiment Works and full-scale trials data are presented as a demonstration of ship/model correlation; additional model test results are given to illustrate use of the manoeuvre for detecting changes in stability due to alterations in ship configuration.


Author(s):  
Wojciech E. Kauczynski ◽  
Per Werenskiold ◽  
Frode Narten

Historically, approval of lifeboats is based on a “calm water” philosophy through the SOLAS regulatory regime. In spring 2005 during offshore installation tests in calm water, unacceptable structural deflection of the roof for one type of free-fall lifeboat was revealed. Immediate actions were initiated by the Norwegian Oil Industry Association (OLF) and Statoil, including the goal of studying and documenting the main performance factors for free-fall lifeboats at up to a 100-year weather condition. In addition, OLF has request to develop relevant criteria for in depth classification of performance, and finally to upgrade urgently, when relevant, all free-fall lifeboats operating on the Norwegian continental shelf to the agreed standards. The basic performance criteria of free-fall lifeboat systems in emergency conditions are: structural strength, acceleration loads on passengers during water impact, boat forward speed immediately after water entry, and the manoeuvring away to a safe distance from the installation. Within the OLF-project, MARINTEK has performed an extensive model test program (over 25000 tests) with the 14 different types of free-fall lifeboats (launched by vertical drop or from a skid). Boat performances have been examined in different weather conditions, ranging from still water up to 11m wave height (regular waves and wind) or 7m (irregular significant wave height with corresponding wind). Calm water model test results have been compared to full-scale test results. In order to extend prognosis of the lifeboat performances up to 100-year storm condition (Hs = 15.7m), special extrapolation methods have been developed for studying the three basic performance areas, augmented by computer simulations applied for higher sea states. This paper presents example results and experiences gained from the model tests, full-scale tests and combined use of simulations and model test results. Experimental model test set-up and applied analysis and extrapolation methods are reviewed. Finally, the application of newly proposed performance and technical criteria is discussed.


Author(s):  
Arjen Koop ◽  
Jaap de Wilde ◽  
André Luís Condino Fujarra ◽  
Oriol Rijken ◽  
Samuel Linder ◽  
...  

Floating offshore structures, such as production semi-submersibles and spars, can exhibit significant in-line and transverse oscillatory motions under current conditions. When caused by vortex shedding from the floater, such motions are generally called Vortex-Induced Motions (VIM). For semi-submersibles these motions could have a strong impact on the fatigue life of mooring and riser systems. Some field development studies indicate that the VIM induced fatigue damage for larger diameter Steel Catenary Risers (SCRs) can have a magnitude equal to or larger than the wave-induced fatigue damage. The VIM phenomenon for multi-column floaters is characterized by complex interactions between the flow and the motions of the floater. Presently, model tests are the preferred method to predict the VIM response of a multi-column floater. However, several studies indicate that the observed VIM response in the field is less than what is observed in model test campaigns: typical model test results are very conservative. Using such test results in the development of mooring and riser design can easily result in very conservative designs which can have a significant impact on mooring and riser cost, or even affect SCR selection and/or feasibility. The primary objective of the VIM JIP was to increase the physical insight into the VIM phenomenon. This knowledge is then used to address possible areas that could explain the differences between the results from model tests and field observations. To address these objectives, the JIP focused on model testing and CFD studies. A key segment of the JIP was the use of identical semi-submersible hull geometries for the numerical and experimental studies thereby facilitating the interpretation of the various response comparisons. The JIP identified that a CFD model, at model-scale Reynolds number, can reasonably well reproduce the VIM response observed in model tests. However, to have confidence in the CFD results extensive numerical verification studies have to be carried out. The effect of external damping was investigated in model tests and in CFD calculations. Both the numerical and experimental results show that external damping significantly reduces the VIM response. Comparisons between CFD results at model- and full-scale Reynolds number indicate that Froude scaling is applicable, with minor scale effects identified on the amplitudes of the VIM motions. Changing the mass ratio of the floater has a small influence on the VIM response. Experimentally it was found that VIM response under inline or transverse waves is slightly smaller than without the presence of waves and is wave heading and wave height dependent. The presence of waves does not explain the observed differences between model test results and field observations. The effect of unsteady current on the VIM response is minimal. Based on the results from the JIP it is concluded that increased external damping reduces the VIM response. The questions that remain are if the increased external damping is actually present in full-scale conditions and if the mooring and riser systems provide the required damping to reduce the VIM amplitudes.


Author(s):  
Torbjørn Hals ◽  
Nils Albert Jenssen

The paper presents the results from a series of ice model tests performed as part of the DYPIC (Dynamic Positioning in Ice Conditions) research program. DYPIC is a research and development project within the EU’s ERA NET MARTEC project. The major purpose of the DYPIC project is development of equipment and methods for DP Ice Model testing which allows the prediction of station keeping capability of different vessel types and offshore structures under various ice conditions. The first DYPIC model tests performed in 2011 was conducted with two significantly different vessel sizes, a 68.0000 m3 volume displacement arctic drillship and an 8.600 m3 polar research vessel. The model scale was 1/30 for the arctic drillship and 1/18.6 for the Polar Research Vessel. The model tests were performed in the ice model basin at HSVA using vessel models equipped with thruster capacity similar to full scale operation according to DP class 2 / 3 operations. The DP control system was also modified from normal open water DP operations in order to cope with the highly varying ice drift loads acting on the vessel. The test program gave data supporting the development of numerical models of ice loads from managed ice, see reference [6]. The main focus in this paper is on the station keeping performance and associated thrust utilization as a function of varying ice drift loads. The results and data collected in the first year of the DYPIC program demonstrates that DP ice model tests will be a valuable tool for evaluation of vessel performance prior to moving on to full scale arctic DP operations.


Author(s):  
X.X. Cheng ◽  
J. Dong ◽  
Y. Peng ◽  
L. Zhao ◽  
Y.J. Ge

Full-scale/model test comparison studies to validate the traditional ABL wind tunnel simulation technique are reviewed. According to the literature review, notable discrepancies between full-scale measurement results and model test results were observed by most performed comparison studies, but the causes of the observed discrepancies were not revealed in a scientific way by those studies. In this regard, a new research scheme for future full-scale/model test comparison studies is proposed in this article, which utilizes the multiple-fan actively controlled wind tunnel simulation technique. With the new research scheme, future full-scale/model test comparison studies are expected to reasonably disclose the main problems with the traditional ABL wind tunnel simulation technique, and the technique can be improved correspondingly.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 49-56 ◽  
Author(s):  
A. M. Lepikhin ◽  
V. V. Moskvichev ◽  
A. E. Burov ◽  
E. V. Aniskovich ◽  
A. P. Cherniaev ◽  
...  

The results of unique experimental studies of the strength and service life of a metal-composite high-pressure tank are presented. The goal of the study is to analyze the fracture mechanisms and evaluate the strength characteristics of the structure. The methodology included tests of full-scale samples of the tank for durability under short-term static, long-term static and cyclic loading with internal pneumatic pressure. Generalized test results and data of visual measurements, instrumental and acoustic-emission control of deformation processes, accumulation of damages and destruction of full-scale tank samples are presented. Analysis of the strength and stiffness of the structure exposed to internal pneumatic pressure is presented. The types of limiting states of the tanks have been established experimentally. Change in the stress-strain state of the tank under cyclic and prolonged static loading is considered. Specific features of the mechanisms of destruction of a metal-composite tank are determined taking into account the role of strain of the metal liner. The calculated and experimental estimates of the energy potential of destruction and the size of the area affected upon destruction of the tank are presented. Analysis of test results showed that the tank has high strength and resource characteristics that meet the requirements of the design documentation. The results of the experiments are in good agreement with the results of numerical calculations and analysis of the stress-strain state and mechanisms of destruction of the metal-composite tank.


1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

Sign in / Sign up

Export Citation Format

Share Document