Presentations of rings with a chain of semidualizing modules
Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring $R$ with dualizing module admits a suitable chain of semidualizing $R$-modules of length $n$, then $R\cong Q/(I_1+\cdots +I_n)$ for some Gorenstein ring $Q$ and ideals $I_1,\dots , I_n$ of $Q$; and, for each $\Lambda \subseteq [n]$, the ring $Q/(\sum _{\ell \in \Lambda } I_\ell )$ has some interesting cohomological properties. This extends the result of Jorgensen et al., and also of Foxby and Reiten.
2000 ◽
Vol 43
(1)
◽
pp. 100-104
◽
Keyword(s):
1973 ◽
Vol 50
◽
pp. 227-232
◽
2014 ◽
Vol 13
(08)
◽
pp. 1450058
◽
2018 ◽
Vol 17
(07)
◽
pp. 1850118
Keyword(s):
1994 ◽
Vol 116
(3)
◽
pp. 401-414
2012 ◽
Vol 11
(03)
◽
pp. 1250049
◽
Keyword(s):