semidualizing modules
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 1-9
Author(s):  
Mohammad Bagheri ◽  
Abdoljavad Taherizadeh

Author(s):  
Sean K. Sather-Wagstaff ◽  
Tony Se ◽  
Sandra Spiroff

Author(s):  
Jiangsheng Hu ◽  
Yuxian Geng ◽  
Jinyong Wu ◽  
Huanhuan Li

Let [Formula: see text] be a commutative Noetherian ring and [Formula: see text] a semidualizing [Formula: see text]-module. We obtain an exact structure [Formula: see text] and prove that the full subcategory [Formula: see text] of [Formula: see text] is a Frobenius category with [Formula: see text] the subcategory of projective and injective objects, where [Formula: see text] and [Formula: see text] (respectively, [Formula: see text]) is the subcategory of [Formula: see text]-Gorenstein flat (respectively, [Formula: see text]-flat [Formula: see text]-cotorsion) [Formula: see text]-modules. Then the stable category [Formula: see text] of [Formula: see text] and the singularity category [Formula: see text] of [Formula: see text] are also considered. As a consequence, we get that there is a Buchweitz’s equivalence [Formula: see text] if and only if [Formula: see text] is a part of some AB-context.


2019 ◽  
Vol 538 ◽  
pp. 232-252
Author(s):  
Sean K. Sather-Wagstaff ◽  
Tony Se ◽  
Sandra Spiroff

2019 ◽  
Vol 18 (07) ◽  
pp. 1950137
Author(s):  
Lixin Mao

Given an [Formula: see text]-module [Formula: see text] and a class of [Formula: see text]-modules [Formula: see text] over a commutative ring [Formula: see text], we investigate the relationship between the existence of [Formula: see text]-envelopes (respectively, [Formula: see text]-covers) and the existence of [Formula: see text]-envelopes or [Formula: see text]-envelopes (respectively, [Formula: see text]-covers or [Formula: see text]-covers) of modules. As a consequence, we characterize coherent rings, Noetherian rings, perfect rings and Artinian rings in terms of envelopes and covers by [Formula: see text]-projective, [Formula: see text]-flat, [Formula: see text]-injective and [Formula: see text]-[Formula: see text]-injective modules, where [Formula: see text] is a semidualizing [Formula: see text]-module.


2019 ◽  
Vol 63 (1) ◽  
pp. 165-191 ◽  
Author(s):  
Sean Sather-Wagstaff ◽  
Tony Se ◽  
Sandra Spiroff

2019 ◽  
Vol 19 (01) ◽  
pp. 2050005
Author(s):  
Zhenxing Di ◽  
Bo Lu ◽  
Junxiu Zhao

Let [Formula: see text] be an arbitrary ring. We use a strict [Formula: see text]-resolution [Formula: see text] of a complex [Formula: see text] with finite [Formula: see text]-projective dimension, where [Formula: see text] denotes a subcategory of right [Formula: see text]-modules closed under extensions and direct summands and admits an injective cogenerator [Formula: see text], to define the [Formula: see text]th relative cohomology functor [Formula: see text] as [Formula: see text]. If a complex [Formula: see text] has finite [Formula: see text]-injective dimension, then one can use a dual argument to define a notion of a relative cohomology functor [Formula: see text], where [Formula: see text] is a subcategory of right [Formula: see text]-modules closed under extensions and direct summands and admits a projective generator. Under several orthogonal conditions, we show that there exists an isomorphism [Formula: see text] of relative cohomology groups for each [Formula: see text]. This result simultaneously encompasses a balance result of Holm on Gorenstein projective and injective modules, a balance result of Sather-Wagstaff, Sharif and White on Gorenstein projective and injective modules with respect to semidualizing modules, and a balance result of Liu on Gorenstein projective and injective complexes. In particular, as an application of this result, we extend the above balance result of Sather-Wagstaff, Sharif and White to the setting of complexes.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850118
Author(s):  
Ensiyeh Amanzadeh

Let [Formula: see text] be a commutative Noetherian local ring. We study the suitable chains of semidualizing [Formula: see text]-modules. We prove that when [Formula: see text] is Artinian, the existence of a suitable chain of semidualizing modules of length [Formula: see text] implies that the Poincar[Formula: see text] series of [Formula: see text] and the Bass series of [Formula: see text] have very specific forms. Also, in this case, we show that the Bass numbers of [Formula: see text] are strictly increasing. This gives an insight into the question of Huneke about the Bass numbers of [Formula: see text].


2017 ◽  
Vol 121 (2) ◽  
pp. 161
Author(s):  
Ensiyeh Amanzadeh ◽  
Mohammad T. Dibaei

Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring $R$ with dualizing module admits a suitable chain of semidualizing $R$-modules of length $n$, then $R\cong Q/(I_1+\cdots +I_n)$ for some Gorenstein ring $Q$ and ideals $I_1,\dots , I_n$ of $Q$; and, for each $\Lambda \subseteq [n]$, the ring $Q/(\sum _{\ell \in \Lambda } I_\ell )$ has some interesting cohomological properties. This extends the result of Jorgensen et al., and also of Foxby and Reiten.


Sign in / Sign up

Export Citation Format

Share Document