gorenstein rings
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


Author(s):  
Matthew Mastroeni ◽  
Hal Schenck ◽  
Mike Stillman

Abstract Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring $R$ of regularity three is Koszul. In [15], we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three, which are not Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the regularity of $R$ is four or more. Let $R$ be a quadratic Gorenstein ring having ${\operatorname {codim}} \ R = c$ and ${\operatorname {reg}} \ R = r \ge 4$. We prove that if $c = r+1$ then $R$ is always Koszul, and for every $c \geq r+2$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda [16] and Migliore–Nagel [19].


Author(s):  
Driss Bennis ◽  
Rachid El Maaouy ◽  
J. R. García Rozas ◽  
Luis Oyonarte

It is now well known that the conditions used by Auslander to define the Gorenstein projective modules on Noetherian rings are independent. Recently, Ringel and Zhang adopted a new approach in investigating Auslander’s conditions. Instead of looking for examples, they investigated rings on which certain implications between Auslander’s conditions hold. In this paper, we investigate the relative counterpart of Auslander’s conditions. So, we extend Ringel and Zhang’s work and introduce other concepts. Namely, for a semidualizing module [Formula: see text], we introduce weakly [Formula: see text]-Gorenstein and partially [Formula: see text]-Gorenstein rings as rings representing relations between the relative counterpart of Auslander’s conditions. Moreover, we introduce a relative notion of the well-known Frobenius category. We show how useful are [Formula: see text]-Frobenius categories in characterizing weakly [Formula: see text]-Gorenstein and partially [Formula: see text]-Gorenstein rings.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Takayuki Hibi ◽  
Dumitru I. Stamate

The classification of complete multipartite graphs whose edge rings are nearly Gorenstein as well as that of finite perfect graphs whose stable set rings are nearly Gorenstein is achieved.


Author(s):  
Katharine Shultis ◽  
Peder Thompson

A commutative noetherian local ring ( R , m ) (R,\mathfrak {m}) is Gorenstein if and only if every parameter ideal of R R is irreducible. Although irreducible parameter ideals may exist in non-Gorenstein rings, Marley, Rogers, and Sakurai show there exists an integer ℓ \ell (depending on R R ) such that R R is Gorenstein if and only if there exists an irreducible parameter ideal contained in m ℓ \mathfrak {m}^\ell . We give upper bounds for ℓ \ell that depend primarily on the existence of certain systems of parameters in low powers of the maximal ideal.


2020 ◽  
Vol 374 (2) ◽  
pp. 1077-1093 ◽  
Author(s):  
Matthew Mastroeni ◽  
Hal Schenck ◽  
Mike Stillman

2020 ◽  
Vol 562 ◽  
pp. 368-389
Author(s):  
Kazuma Shimomoto ◽  
Naoki Taniguchi ◽  
Ehsan Tavanfar
Keyword(s):  

2020 ◽  
Vol 156 (9) ◽  
pp. 1873-1914
Author(s):  
Stephen Coughlan ◽  
Tom Ducat

Cluster algebras give rise to a class of Gorenstein rings which enjoy a large amount of symmetry. Concentrating on the rank 2 cases, we show how cluster varieties can be used to construct many interesting projective algebraic varieties. Our main application is then to construct hundreds of families of Fano 3-folds in codimensions 4 and 5. In particular, for Fano 3-folds in codimension 4 we construct at least one family for 187 of the 206 possible Hilbert polynomials contained in the Graded Ring Database.


2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


Sign in / Sign up

Export Citation Format

Share Document