scholarly journals Dimension of the intersection of certain Cantor sets in the plane

2021 ◽  
Vol 41 (2) ◽  
pp. 227-244
Author(s):  
Steen Pedersen ◽  
Vincent T. Shaw

In this paper we consider a retained digits Cantor set \(T\) based on digit expansions with Gaussian integer base. Let \(F\) be the set all \(x\) such that the intersection of \(T\) with its translate by \(x\) is non-empty and let \(F_{\beta}\) be the subset of \(F\) consisting of all \(x\) such that the dimension of the intersection of \(T\) with its translate by \(x\) is \(\beta\) times the dimension of \(T\). We find conditions on the retained digits sets under which \(F_{\beta}\) is dense in \(F\) for all \(0\leq\beta\leq 1\). The main novelty in this paper is that multiplication the Gaussian integer base corresponds to an irrational (in fact transcendental) rotation in the complex plane.

2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


1995 ◽  
Vol 06 (01) ◽  
pp. 19-32 ◽  
Author(s):  
NIKOLAY GUSEVSKII ◽  
HELEN KLIMENKO

We construct purely loxodromic, geometrically finite, free Kleinian groups acting on S3 whose limit sets are wild Cantor sets. Our construction is closely related to the construction of the wild Fox–Artin arc.


Author(s):  
A. F. Beardon

Introduction and notation. In this paper a generalization of the Cantor set is discussed. Upper and lower estimates of the Hausdorff dimension of such a set are obtained and, in particular, it is shown that the Hausdorff dimension is always positive and less than that of the underlying space. The concept of local dimension at a point is introduced and studied as a function of that point.


1997 ◽  
Vol 17 (3) ◽  
pp. 531-564 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER

Given a ${\cal C}^{1+\gamma}$ hyperbolic Cantor set $C$, we study the sequence $C_{n,x}$ of Cantor subsets which nest down toward a point $x$ in $C$. We show that $C_{n,x}$ is asymptotically equal to an ergodic Cantor set valued process. The values of this process, called limit sets, are indexed by a Hölder continuous set-valued function defined on Sullivan's dual Cantor set. We show the limit sets are themselves ${\cal C}^{k+\gamma},{\cal C}^\infty$ or ${\cal C}^\omega$ hyperbolic Cantor sets, with the highest degree of smoothness which occurs in the ${\cal C}^{1+\gamma}$ conjugacy class of $C$. The proof of this leads to the following rigidity theorem: if two ${\cal C}^{k+\gamma},{\cal C}^\infty$ or ${\cal C}^\omega$ hyperbolic Cantor sets are ${\cal C}^1$ conjugate, then the conjugacy (with a different extension) is in fact already ${\cal C}^{k+\gamma},{\cal C}^\infty$ or ${\cal C}^\omega$. Within one ${\cal C}^{1+\gamma}$ conjugacy class, each smoothness class is a Banach manifold, which is acted on by the semigroup given by rescaling subintervals. Smoothness classes nest down, and contained in the intersection of them all is a compact set which is the attractor for the semigroup: the collection of limit sets. Convergence is exponentially fast, in the ${\cal C}^1$ norm.


2013 ◽  
Vol 23 ◽  
pp. 3-8 ◽  
Author(s):  
Xiao Jun Yang ◽  
Dumitru Baleanu

Recently the local fractional operators have started to be considered a useful tool to deal with fractal functions defined on Cantor sets. In this paper, we consider the Fokker-Planck equation on a Cantor set derived from the fractional complex transform method. Additionally, the solution obtained is considered by using the local fractional variational iteration method.


2021 ◽  
Vol 25 (5) ◽  
pp. 88-103
Author(s):  
Vyron Vellis

In this note we provide a quasisymmetric taming of uniformly perfect and uniformly disconnected sets that generalizes a result of MacManus [Rev. Mat. Iberoamericana 15 (1999), pp. 267–277] from 2 to higher dimensions. In particular, we show that a compact subset of R n \mathbb {R}^n is uniformly perfect and uniformly disconnected if and only if it is ambiently quasiconformal to the standard Cantor set C \mathcal {C} in R n + 1 \mathbb {R}^{n+1} .


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050057
Author(s):  
HUI RAO ◽  
ZHI-YING WEN ◽  
YING ZENG

Recently there are several works devoted to the study of self-similar subsets of a given self-similar set, which turns out to be a difficult problem. Let [Formula: see text] be an integer and let [Formula: see text]. Let [Formula: see text] be the uniform Cantor set defined by the following set equation: [Formula: see text] We show that for any [Formula: see text], [Formula: see text] and [Formula: see text] essentially have the same self-similar subsets. Precisely, [Formula: see text] is a self-similar subset of [Formula: see text] if and only if [Formula: see text] is a self-similar subset of [Formula: see text], where [Formula: see text] (similarly [Formula: see text]) is the coding map from the symbolic space [Formula: see text] to [Formula: see text].


1991 ◽  
Vol 11 (4) ◽  
pp. 731-736
Author(s):  
Stewart D. Johnson

AbstractIt it shown that a minimal attractor for a continuous, lebesgue non-singular transformation on an interval with no wandering intervals is either a periodic orbit, a finite collection of intervals, a simply attracting cantor set, or an absorbing cantor set.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850061
Author(s):  
CHUNTAI LIU

Self-similarity and Lipschitz equivalence are two basic and important properties of fractal sets. In this paper, we consider those properties of the union of Cantor set and its translate. We give a necessary and sufficient condition that the union is a self-similar set. Moreover, we show that the union satisfies the strong separation condition if it is of the self-similarity. By using the augment tree, we characterize the Lipschitz equivalence between Cantor set and the union of Cantor set and its translate.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Dumitru Baleanu ◽  
J. A. Tenreiro Machado ◽  
Carlo Cattani ◽  
Mihaela Cristina Baleanu ◽  
Xiao-Jun Yang

We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document