scholarly journals RNA sequencing-based exploration of the effects of blue laser irradiation on mRNAs involved in functional metabolites of D. officinales

PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12684
Author(s):  
Hansheng Li ◽  
Yuqiang Qiu ◽  
Gang Sun ◽  
Wei Ye

Dendrobium officinale Kimura et Migo (D. officinale) has promising lung moisturizing, detoxifying, and immune boosting properties. Light is an important factor influencing functional metabolite synthesis in D. officinale. The mechanisms by which lasers affect plants are different from those of ordinary light sources; lasers can effectively address the shortcomings of ordinary light sources and have significant interactions with plants. Different light treatments (white, blue, blue laser) were applied, and the number of red leaves under blue laser was greater than that under blue and white light. RNA-seq technology was used to analyze differences in D. officinale under different light treatments. The results showed 465, 2,107 and 1,453 differentially expressed genes (DEGs) in LB-B, LB-W and W-B, respectively. GO, KEGG and other analyses of DEGs indicated that D. officinale has multiple blue laser response modes. Among them, the plasma membrane, cutin, suberine and wax biosynthesis, flavone and flavonol biosynthesis, heat shock proteins, etc. play central roles. Physiological and biochemical results verified that blue laser irradiation significantly increases POD, SOD, and PAL activities in D. officinale. The functional metabolite results showed that blue laser had the greatest promoting effect on total flavonoids, polysaccharides, and alkaloids. qPCR verification combined with other results suggested that CRY DASH, SPA1, HY5, and PIF4 in the blue laser signal transduction pathway affect functional metabolite accumulation in D. officinale through positively regulated expression patterns, while CO16 and MYC2 exhibit negatively regulated expression patterns. These findings provide new ideas for the efficient production of metabolites in D. officinale.

Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 285-302 ◽  
Author(s):  
J.M. Slack ◽  
D. Tannahill

Interest in the problem of anteroposterior specification has quickened because of our near understanding of the mechanism in Drosophila and because of the homology of Antennapedia-like homeobox gene expression patterns in Drosophila and vertebrates. But vertebrates differ from Drosophila because of morphogenetic movements and interactions between tissue layers, both intimately associated with anteroposterior specification. The purpose of this article is to review classical findings and to enquire how far these have been confirmed, refuted or extended by modern work. The “pre-molecular” work suggests that there are several steps to the process: (i) Formation of anteroposterior pattern in mesoderm during gastrulation with posterior dominance. (ii) Regional specific induction of ectoderm to form neural plate. (iii) Reciprocal interactions from neural plate to mesoderm. (iv) Interactions within neural plate with posterior dominance. Unfortunately, almost all the observable markers are in the CNS rather than in the mesoderm where the initial specification is thought to occur. This has meant that the specification of the mesoderm has been assayed indirectly by transplantation methods such as the Einsteckung. New molecular markers now supplement morphological ones but they are still mainly in the CNS and not the mesoderm. A particular interest attaches to the genes of the Antp-like HOX clusters since these may not only be markers but actual coding factors for anteroposterior levels. We have a new understanding of mesoderm induction based on the discovery of activins and fibroblast growth factors (FGFs) as candidate inducing factors. These factors have later consequences for anteroposterior pattern with activin tending to induce anterior, and FGF posterior structures. Recent work on neural induction has implicated cAMP and protein kinase C (PKC) as elements of the signal transduction pathway and has provided new evidence for the importance of tangential neural induction. The regional specificity of neural induction has been reinvestigated using molecular markers and provides conclusions rather similar to the classical work. Defects in the axial pattern may be produced by retinoic acid but it remains unclear whether its effects are truly coordinate ones or are concentrated in certain regions of high sensitivity. In general the molecular studies have supported and reinforced the “pre-molecular ones”. Important questions still remain: (i) How much pattern is there in the mesoderm (how many states?) (ii) How is this pattern generated by the invaginating organizer? (iii) Is there one-to-one transmission of codings to the neural plate? (iv) What is the nature of the interactions within the neural plate? (v) Are the HOX cluster genes really the anteroposterior codings?


2019 ◽  
Vol 47 (4) ◽  
pp. 1100-1115 ◽  
Author(s):  
Shuiyuan CHENG ◽  
Xiaomeng LIU ◽  
Yongling LIAO ◽  
Weiwei ZHANG ◽  
Jiabao YE ◽  
...  

Ginkgo biloba is widely planted, and the extracts of leaves contain flavonoids, terpene esters and other medicinal active ingredients. WRKY proteins are a large transcription factor family in plants, which play an important role in the regulation of plant secondary metabolism and development, as well as the response to biotic and abiotic stress. In our study, we identified 40 genes with conserved WRKY motifs in the G. biloba genome and classified into groups I (groups I-N and -C), II (groups IIa, b, c, d, and e), and III, which include 12, 26, and 2 GbWRKY genes, respectively. Meanwhile, the expression patterns of 10 GbWRKY (GbWRKY2, GbWRKY3, GbWRKY5, GbWRKY7, GbWRKY11, GbWRKY15, GbWRKY23, GbWRKY29, GbWRKY31, GbWRKY32) under different tissue and abiotic stress conditions were analyzed. Under stress treatment, the expression patterns of 10 WRKY genes were changed. 10 ginkgo WRKY transcription factors were induced by ETH and SA, but there are two different induced response modes. The expression of 10 WRKY genes was inhibited under low temperature, high temperature and MeJA hormone induction. Most WRKY genes were up-regulated under the induction of high salt and ABA. GbWRKYs were differentially expressed in various tissues after abiotic stress and plant hormone treatments, thereby indicating their possible roles in biological processes and abiotic stress tolerance and adaptation. Our results provided insight into the genome-wide identification of GbWRKYs, as well as their differential responses to stresses and hormones. These data can also be utilized to identify potential molecular targets to confer tolerance to various stresses in G. biloba.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Florian Vogelbacher ◽  
Martin Sagmeister ◽  
Jochen Kraft ◽  
Xue Zhou ◽  
Jinhua Huang ◽  
...  

AbstractOne of the major barriers for a widespread commercial uptake of silicon nitride photonic integrated circuits for cost-sensitive applications is the lack of low-cost monolithically integrated laser light sources directly emitting into single-mode waveguides. In this work, we demonstrate an optically pumped organic solid-state slot-waveguide distributed feedback laser designed for a silicon nitride organic hybrid photonic platform. Pulsed optical excitation of the gain medium is achieved by a 450 nm laser diode. The optical feedback for lasing is based on a second-order laterally coupled Bragg grating with a slot-waveguide core. Optimized material gain properties of the organic dye together with the increased modal gain of the laser mode arising from the improved overlap of the slot-waveguide geometry with the gain material enable single-mode lasing at a wavelength of 600 nm. The straightforward integration and operation with a blue laser diode leads to a cost-effective coherent light source for photonic integrated devices.


2020 ◽  
Vol 21 (5) ◽  
pp. 1556 ◽  
Author(s):  
Valentina Maggisano ◽  
Stefania Bulotta ◽  
Marilena Celano ◽  
Jessica Maiuolo ◽  
Saverio Massimo Lepore ◽  
...  

Exposure to environmental endocrine disruptors has been associated with an increased frequency of thyroid pathology. In this study, we evaluated the effects of various concentrations of methylmercury (MeHg) on immortalized, non-tumorigenic thyroid cells (Nthy-ori-3-1). Exposure to MeHg at 2.5 and 5 µM for 24 h caused a reduction in cell viability with a decrease of the cell population in sub-G0 phase, as detected by MTT and flow cytometry. Conversely, MeHg at the lower concentration of 0.1 µM increased the cell viability with a rise of G2/M phase. An immunoblot analysis showed higher expression levels of phospho-ERK and not of phospho-Akt. Further enhancement of the cell growth rate was observed after a prolonged exposure of the cells up to 18 days to MeHg 0.1 µM. The present findings demonstrate the toxicity of high concentrations of MeHg on thyroid cells, while showing that treatment with lower doses of Hg, as may occur after prolonged exposure to this environmental contaminant, exerts a promoting effect on thyroid cell proliferation, by acting on the ERK-mediated pro-oncogenic signal transduction pathway.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3613-3622 ◽  
Author(s):  
Hans-Christian Aasheim ◽  
Leon W.M.M. Terstappen ◽  
Ton Logtenberg

Abstract Members of the large Eph family of receptor tyrosine kinases (RTKs) display temporally and spatially restricted expression patterns during embryogenesis, suggesting a role in various developmental processes. We have begun to investigate the expression of members of this receptor family during human hematopoiesis, in particular B lymphopoiesis. Expression of Eph RTKs in cells of the B-lymphoid lineage was assessed by using degenerate oligonucleotide primers based on stretches of conserved nucleic acid sequences in members of the Eph family. First, the content of Eph-family RTKs was assessed in freshly sorted fetal bone marrow pro–B cells. This population was found to harbor transcripts of the Hek8 and Hek11 members of this gene family. Subsequent analysis of expression of these genes in B cells representing various differentiation and ontogenic stages showed that the Hek8 transcript is constitutively present in all fetal and adult B-lineage cells, with high levels of expression in peripheral blood B cells. In contrast, the Hek11 transcript was exclusively found in fetal bone marrow pro–B cells and pre–B cells, but not in more mature fetal B-lineage cells. All adult B-lineage cells, from early pro–B cells to end-stage plasma cells, lacked Hek11 transcripts. The developmentally regulated expression of Hek11 during fetal B lymphopoiesis suggests a role for this gene in pre/pro–B cell expansion and/or differentiation and defines a difference in progenitor B cell populations isolated from fetal versus adult human bone marrow.


2010 ◽  
Vol 98 (3) ◽  
pp. 211-215 ◽  
Author(s):  
Toshihiro Kushibiki ◽  
Takako Tajiri ◽  
Yoshihisa Ninomiya ◽  
Kunio Awazu

Nitric Oxide ◽  
2006 ◽  
Vol 14 (4) ◽  
pp. 32
Author(s):  
Rainer Mittermayr ◽  
Anatoly Osipov ◽  
Christina Piskernik ◽  
Susanne Haindl ◽  
Peter Dungel ◽  
...  

2016 ◽  
Author(s):  
Nicholas M. Thomson ◽  
Tomokazu Shirai ◽  
Marco Chiapello ◽  
Akihiko Kondo ◽  
Krishnan J. Mukherjee ◽  
...  

1AbstractQuiescent (Q-Cell) Escherichia coli cultures can be created by using the signalling molecule indole to halt cell division of an hns mutant strain. This uncouples metabolism from cell growth and allows for more efficient use of carbon feedstocks. However, the reason for the increased productivity of cells in this state was previously unknown. We show here that Q-cells can maintain metabolic activity in the absence of growth for up to 24 h, leading to four times greater per-cell productivity of a model metabolite, 3-hydroxybutyrate (3HB), than a control. Metabolomic data show that by disrupting the proton-motive force, indole interrupts the tricarboxylic acid cycle, leading to the accumulation of metabolites in the glycolysis pathway that are excellent starting points for high-value chemical production. By comparing protein expression patterns between wild-type and Q-cell cultures we show that Q-cells overexpress stress response proteins, which prime them to tolerate the metabolic imbalances incurred through indole addition. Quiescent cultures produced half the cell biomass of control cultures lacking indole, but were still able to produce 39.4 g.L-1 of 3HB compared to 18.6 g.L-1 in the control. Therefore, Q-cells have high potential as a platform technology for the efficient production of a wide range of commodity and high value chemicals.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6553
Author(s):  
Puntita Siengdee ◽  
Waranee Pradit ◽  
Siriwadee Chomdej ◽  
Korakot Nganvongpanit

Background Previous studies reported the effect of enrofloxacin (Enro) and marbofloxacin (Mar) on cell death and alteration of the key genes involved in catabolic and anabolic processes and demonstrated the beneficial effects of hyaluronan (HA) combined with fluoroquinolones (FQs) on primary canine chondrocytes. This study further determines the effects of these treatments on canine cartilage explants in both normal and interleukin-1 beta (IL-1β)-stimulated conditions. Methods We examined sulfate glycosaminoglycan (s-GAG) release, uronic acid (UA) content, and safranin-O staining, as well as the expression patterns of inflammatory, extracellular matrix (ECM) component and enzymes. Results Enro treatment alone effectively stimulated proteoglycan anabolism by increasing UA content and glycosaminoglycans (GAGs) in normal and pre-IL-1β-stimulated explant, whereas Mar showed opposite results. The combination of HA and FQs increased s-GAG release and UA content in normal explants in addition to effective down-regulated expression of MMP3. HA reduced the adverse effects of Mar by enhancing UA and GAG contents in both normal and pre-IL-1β-explants. Moreover, HA effectively induced HAS1and ACANup-regulation and reduced MMP9, TNF, PTGS2,and NFKB1 expression for a long term. Discussion Our results suggest the direct effects of Enro and Mar may selectively stimulate the conditioned explants to express MMP-codinggenes and promote gene expression involved in matrix production, pro-inflammatory cytokines, and cell degradation in different directions. HA successfully reduced the adverse effects of FQs by enhancing s-GAG and UA contents and down-regulated expression of MMPs.


Sign in / Sign up

Export Citation Format

Share Document