scholarly journals A new balaenopterid species from the Southern North Sea Basin informs about phylogeny and taxonomy of Burtinopsis and Protororqualus (Cetacea, Mysticeti, Balaenopteridae)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9570 ◽  
Author(s):  
Michelangelo Bisconti ◽  
Mark E.J. Bosselaers

Background An extensive radiation can be inferred among balaenopterid mysticetes in the last 10 million years based on a rich fossil record. Many extinct genera and species have been established in the past by the study of fossil rorquals from northern and southern hemispheres. In many cases, the new fossils are used to create new genera. However, in very recent times, new species of known genera have been described that help our understanding of the speciation processes and the biogeography of these whales. Here, a new species of balaenopterid whales is described in order to better understand the past diversity of Balaenopteridae and to analyze its paleobiogeographical implications. As the new species closely resembles a taxon established in the 19th century (i.e., Burtinopsis), a detailed analysis of this taxon was necessary to support the new taxonomic statements of this article. Methods A new partial skeleton including skull and earbones is described and compared to an extended sample of living and fossil mysticete species. A phylogenetic analysis including 355 character states scored in 88 taxa was performed to understand its relationships within the genus Protororqualus, to allow paleobiogeographic inferences and to better understand the relationships of Protororqualus within Balaenopteridae. Maximum parsimony analyses of character evolution were performed to understand morphological transformations within Balaenopteridae. The revision of Burtinopsis was carried out based on detailed descriptions and comparisons of the type materials that were figured and measured. Results Protororqualus wilfriedneesi sp. nov. was established based on a comparative analysis of the skull and earbone morphology. The specimen is dated back to the Zanclean (Lower Pliocene, between c. 5.3 and 3.6 Ma). A taphonomical study of the holotype skeleton revealed evidence of interactions with sharks and fishes before the definitive burial of the carcass. Based on the phylogenetic analysis, the monophyly of the genus Protororqualus was confirmed. Protororqualus wilfriedneesi sp. nov. was more derived than Protororqualus cuvieri suggesting that it resulted from an invasion of the North Sea Basin (and the North Atlantic ocean) from the Mediterranean basin. Several specimens from western and eastern sides of the Atlantic Ocean are described that suggest that Protororqualus wilfriedneesi had a trans-Atlantic distribution in the Pliocene.

2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2004 ◽  
Vol 1 (1) ◽  
pp. 367-392 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea of the NW European continental shelf. The air-sea exchange of CO2 has been assessed as closing term of the budget. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The dominant carbon sink is the final export to the North Atlantic Ocean. The North Sea acts as a sink for organic carbon. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2007 ◽  
Vol 21 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Helmuth Thomas ◽  
A. E. Friederike Prowe ◽  
Steven van Heuven ◽  
Yann Bozec ◽  
Hein J. W. de Baar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document