scholarly journals High-Performance SVPWM-VCIM Drive with Adaptive Neuro-Fuzzy Speed Controller

Author(s):  
Rajesh Kumar ◽  
R. A. Gupta ◽  
Rajesh S. Surjuse
2014 ◽  
Vol 9 (12) ◽  
pp. 1226-1234
Author(s):  
Kadir Temizel ◽  
Mehmet Odabas ◽  
Nurettin Senyer ◽  
Gokhan Kayhan ◽  
Sreekala Bajwa ◽  
...  

AbstractLack of water resources and high water salinity levels are among the most important growth-restricting factors for plants species of the world. This research investigates the effect of irrigation levels and salinity on reflectance of Saint John’s wort leaves (Hypericum perforatum L.) under stress conditions (water and salt stress) by multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Empirical and heuristics modeling methods were employed in this study to relate stress conditions to leaf reflectance. It was found that the constructed ANN model exhibited a high performance than multiple regression and ANFIS in estimating leaf reflectance accurately.


2018 ◽  
Vol 155 ◽  
pp. 01037
Author(s):  
Sergey Gorbachev ◽  
Vladimir Syryamkin

The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree.


2012 ◽  
Vol 39 (9) ◽  
pp. 29-37 ◽  
Author(s):  
Basma A.Omar ◽  
Amira Y. Haikal ◽  
Fayz F. Areed

Author(s):  
Mohammed Abdel-Nasser ◽  
Omar Salah

Robotics technology is used widely in minimally invasive surgery (MIS) which provides high performance and accuracy. The most famous robot arm mechanisms, which are used in MIS, are tendon-driven mechanism (TDM), and concentric tube mechanism (CTM). Unfortunately, these mechanisms until now have some limitations, i.e. making friction with the tissue during extracting and retracting and strain limits, for TDM and CTM respectively. A new hybrid concentric tube-tendon driven mechanism (HCTDM) is proposed to overcome these limitations. HCTDM enables the end-effector to get close to and get away from the surgical area during the operation without harming the tissue and with more flexibility. In addition to that, the workspace increases as a result of this combination, too. This benefit serves MIS, especially endoscopic surgeries (ESs). We did an analytical study of this idea and got the forward kinematics. In the inverse kinematics, an intelligent approach which is called an adaptive neuro-fuzzy inference system (ANFIS) is used because the closed-form solution is more complicated for such these mechanisms. Finally, HCTDM is analyzed and evaluated by using a computer simulation. The simulation results show that the workspace becomes wider and has more dexterity than use TDM or CTM individually. Furthermore, various trajectories are used to test the mechanism and the kinematic analysis, which show the mechanism can follow and track the trajectories with maximum mean error 1.279, 0.7027, and [Formula: see text] for X, Y, and Z axes respectively.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 49377-49394 ◽  
Author(s):  
Qazwan A. Tarbosh ◽  
Omer Aydogdu ◽  
Nabil Farah ◽  
Md Hairul Nizam Talib ◽  
Adeeb Salh ◽  
...  

Author(s):  
Roslina Mat Ariff ◽  
Dirman Hanafi ◽  
Wahyu Mulyo Utomo ◽  
Nooradzianie Muhammad Zin ◽  
Sy Yi Sim ◽  
...  

This paper deal with the problem in speed controller for Indirect Field Oriented Control of Induction Motor.  The problem cause decrease performance of Induction Motor where it widely used in high-performance applications. In order decrease the fault of speed induction motor, Takagi-Sugeno type Fuzzy logic control is used as the speed controller. For this, a model of indirect field oriented control of induction motor is built and simulating using MATLAB simulink. Secondly, error of speed and derivative error as the input and change of torque command as the output for speed control is applied in simulation. Lastly, from the simulation result overshoot is zero persent, rise time is 0.4s and settling time is 0.4s. The important data is steady state error is 0.01 percent show that the speed can follow reference speed. From that simulation result illustrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document