scholarly journals The First and Second Zagreb Index of Complement Graph and Its Applications of Molecular Graph

Author(s):  
Mohammed S. Alsharafi ◽  
Mahioub M. Shubatah ◽  
Abdu Q. Alameri

In this paper, some basic mathematical operation for the second Zagreb indices of graph containing the join and strong product of graph operation, and the rst and second Zagreb indices of complement graph operations such as cartesian product G1 G2, composition G1 G2, disjunction G1 _ G2, symmetric dierence G1 G2, join G1 + G2, tensor product G1  G2, and strong product G1 G2 will be explained. The results are applied to molecular graph of nanotorus and titania nanotubes.

2019 ◽  
Vol 11 (05) ◽  
pp. 1950054 ◽  
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai

The third leap Zagreb index of a graph [Formula: see text] is denoted as [Formula: see text] and is defined as [Formula: see text], where [Formula: see text] and [Formula: see text] are the 2-distance degree and the degree of the vertex [Formula: see text] in [Formula: see text], respectively. The first, second and third leap Zagreb indices were introduced by Naji et al. [A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Combin. Optim. 2(2) (2017) 99–117] in 2017. In this paper, the behavior of the third leap Zagreb index under several graph operations like the Cartesian product, Corona product, neighborhood Corona product, lexicographic product, strong product, tensor product, symmetric difference and disjunction of two graphs is studied.


2016 ◽  
Vol 4 (2) ◽  
pp. 47 ◽  
Author(s):  
Sharmila Devi ◽  
V. Kaladevi

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the degrees of vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Similarly, the hyper Zagreb index is defined as the sum of square of degree of vertices over all the edges.  In this paper, First we obtain the hyper Zagreb indices of some derived graphs and the generalized transformations graphs. Finally, the hyper Zagreb indices of double, extended double, thorn graph, subdivision vertex corona of graphs, Splice and link graphs are obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ahmed Ayache ◽  
Abdu Alameri ◽  
Mohammed Alsharafi ◽  
Hanan Ahmed

The second hyper-Zagreb coindex is an efficient topological index that enables us to describe a molecule from its molecular graph. In this current study, we shall evaluate the second hyper-Zagreb coindex of some chemical graphs. In this study, we compute the value of the second hyper-Zagreb coindex of some chemical graph structures such as sildenafil, aspirin, and nicotine. We also present explicit formulas of the second hyper-Zagreb coindex of any graph that results from some interesting graphical operations such as tensor product, Cartesian product, composition, and strong product, and apply them on a q-multiwalled nanotorus.


2020 ◽  
Vol 3 (3) ◽  
pp. 53-61
Author(s):  
Mohammed Saad Alsharafi ◽  
◽  
Mahioub Mohammed Shubatah ◽  
Abdu Qaid Alameri ◽  
◽  
...  

A topological index of graph \(G\) is a numerical parameter related to graph which characterizes its molecular topology and is usually graph invariant. Topological indices are widely used to determine the correlation between the specific properties of molecules and the biological activity with their configuration in the study of quantitative structure-activity relationships (QSARs). In this paper some basic mathematical operations for the forgotten index of complement graph operations such as join \(\overline {G_1+G_2}\), tensor product \(\overline {G_1 \otimes G_2}\), Cartesian product \(\overline {G_1\times G_2}\), composition \(\overline {G_1\circ G_2}\), strong product \(\overline {G_1\ast G_2}\), disjunction \(\overline {G_1\vee G_2}\) and symmetric difference \(\overline {G_1\oplus G_2}\) will be explained. The results are applied to molecular graph of nanotorus and titania nanotubes.


2020 ◽  
Vol 43 (1) ◽  
pp. 219-228
Author(s):  
Ghulam Dustigeer ◽  
Haidar Ali ◽  
Muhammad Imran Khan ◽  
Yu-Ming Chu

AbstractChemical graph theory is a branch of graph theory in which a chemical compound is presented with a simple graph called a molecular graph. There are atomic bonds in the chemistry of the chemical atomic graph and edges. The graph is connected when there is at least one connection between its vertices. The number that describes the topology of the graph is called the topological index. Cheminformatics is a new subject which is a combination of chemistry, mathematics and information science. It studies quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. We evaluated the second multiplicative Zagreb index, first and second universal Zagreb indices, first and second hyper Zagreb indices, sum and product connectivity indices for the planar octahedron network, triangular prism network, hex planar octahedron network, and give these indices closed analytical formulas.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 227 ◽  
Author(s):  
Shaohui Wang ◽  
Chunxiang Wang ◽  
Lin Chen ◽  
Jia-Bao Liu ◽  
Zehui Shao

Given a (molecular) graph, the first multiplicative Zagreb index Π 1 is considered to be the product of squares of the degree of its vertices, while the second multiplicative Zagreb index Π 2 is expressed as the product of endvertex degree of each edge over all edges. We consider a set of graphs G n , k having n vertices and k cut edges, and explore the graphs subject to a number of cut edges. In addition, the maximum and minimum multiplicative Zagreb indices of graphs in G n , k are provided. We also provide these graphs with the largest and smallest Π 1 ( G ) and Π 2 ( G ) in G n , k .


Author(s):  
Mohammed Alsharafi ◽  
Yusuf Zeren ◽  
Abdu Alameri

In chemical graph theory, a topological descriptor is a numerical quantity that is based on the chemical structure of underlying chemical compound. Topological indices play an important role in chemical graph theory especially in the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR). In this paper, we present explicit formulae for some basic mathematical operations for the second hyper-Zagreb index of complement graph containing the join G1 + G2, tensor product G1 \(\otimes\) G2, Cartesian product G1 x G2, composition G1 \(\circ\) G2, strong product G1 * G2, disjunction G1 V G2 and symmetric difference G1 \(\oplus\) G2. Moreover, we studied the second hyper-Zagreb index for some certain important physicochemical structures such as molecular complement graphs of V-Phenylenic Nanotube V PHX[q, p], V-Phenylenic Nanotorus V PHY [m, n] and Titania Nanotubes TiO2.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muhammad Bilal ◽  
Muhammad Kamran Jamil ◽  
Muhammad Waheed ◽  
Abdu Alameri

Graph operations play an important role to constructing complex network structures from simple graphs, and these complex networks play vital roles in different fields such as computer science, chemistry, and social sciences. Computation of topological indices of these complex network structures via graph operation is an important task. In this study, we defined two new variants of graph products, namely, corona join and subdivision vertex join products and investigated exact expressions of the first and second Zagreb indices and first reformulated Zagreb index for these new products.


2017 ◽  
Vol 26 (2) ◽  
pp. 211-219
Author(s):  
K. Pattabiraman

In this paper, we present the upper bounds for the product version of reciprocal Gutman indices of the tensor product, join and strong product of two connected graphs in terms of other graph invariants including the Harary index and Zagreb indices.


Sign in / Sign up

Export Citation Format

Share Document