scholarly journals Bounded Oscillation Theorem for Unstable-type Neutral Impulsive Differential Equations of the Second Order

Author(s):  
U. A. Abasiekwere ◽  
E. Eteng ◽  
I. O. Isaac ◽  
Z. Lipcsey

The oscillations theory of neutral impulsive differential equations is gradually occupying a central place among the theories of oscillations of impulsive differential equations. This could be due to the fact that neutral impulsive differential equations plays fundamental and significant roles in the present drive to further develop information technology. Indeed, neutral differential equations appear in networks containing lossless transmission lines (as in high-speed computers where the lossless transmission lines are used to interconnect switching circuits).   In this paper, we study the behaviour of solutions of a certain class of second-order linear neutral differential equations with impulsive constant jumps.  This type of equation in practice is always known to have an unbounded non-oscillatory solution.  We, therefore, seek sufficient conditions for which all bounded solutions are oscillatory and provide an example to demonstrate the applicability of the abstract result.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 934
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Kamsing Nonlaopon ◽  
Hijaz Ahmad

The oscillation of impulsive differential equations plays an important role in many applications in physics, biology and engineering. The symmetry helps to deciding the right way to study oscillatory behavior of solutions of impulsive differential equations. In this work, several sufficient conditions are established for oscillatory or asymptotic behavior of second-order neutral impulsive differential systems for various ranges of the bounded neutral coefficient under the canonical and non-canonical conditions. Here, one can see that if the differential equations is oscillatory (or converges to zero asymptotically), then the discrete equation of similar type do not disturb the oscillatory or asymptotic behavior of the impulsive system, when impulse satisfies the discrete equation. Further, some illustrative examples showing applicability of the new results are included.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 134 ◽  
Author(s):  
Shyam Sundar Santra ◽  
Ioannis Dassios ◽  
Tanusri Ghosh

In this work, we present some new sufficient conditions for the oscillation of a class of second-order neutral delay differential equation. Our oscillation results, complement, simplify and improve recent results on oscillation theory of this type of non-linear neutral differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


1993 ◽  
Vol 36 (4) ◽  
pp. 485-496 ◽  
Author(s):  
Shigui Ruan

AbstractIn this paper, we consider the oscillatory behavior of the second order neutral delay differential equationwhere t ≥ t0,T and σ are positive constants, a,p, q € C(t0, ∞), R),f ∊ C[R, R]. Some sufficient conditions are established such that the above equation is oscillatory. The obtained oscillation criteria generalize and improve a number of known results about both neutral and delay differential equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Zhonghai Guo ◽  
Xiaoliang Zhou ◽  
Wu-Sheng Wang

We study the following second order mixed nonlinear impulsive differential equations with delay(r(t)Φα(x′(t)))′+p0(t)Φα(x(t))+∑i=1npi(t)Φβi(x(t-σ))=e(t),t≥t0,t≠τk,x(τk+)=akx(τk),x'(τk+)=bkx'(τk),k=1,2,…, whereΦ*(u)=|u|*-1u,σis a nonnegative constant,{τk}denotes the impulsive moments sequence, andτk+1-τk>σ. Some sufficient conditions for the interval oscillation criteria of the equations are obtained. The results obtained generalize and improve earlier ones. Two examples are considered to illustrate the main results.


2010 ◽  
Vol 24 (14) ◽  
pp. 1559-1572 ◽  
Author(s):  
RATHINASAMY SAKTHIVEL ◽  
YONG REN ◽  
N. I. MAHMUDOV

Many practical systems in physical and biological sciences have impulsive dynamical behaviors during the evolution process which can be modeled by impulsive differential equations. In this paper, the approximate controllability of nonlinear second-order stochastic infinite-dimensional dynamical systems with impulsive effects is considered. By using the Holder's inequality, stochastic analysis and fixed point strategy, a new set of necessary and sufficient conditions are formulated which guarantees the approximate controllability of the nonlinear second-order stochastic system. The results are obtained under the assumption that the associated linear system is approximately controllable.


Sign in / Sign up

Export Citation Format

Share Document