forest understory
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 86)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Janet A. Morrison ◽  
Melkamu Woldemariam

Trees and shrubs in suburban forest understories can be subject to chronic herbivory from abundant white-tailed deer. An undocumented consequence of this stress may be shifts in secondary metabolite production associated with defense. We aimed to learn whether plants protected from deer exhibited different metabolomic profiles compared to those exposed to deer. We tested the indigenous species Nyssa sylvatica and Lindera benzoin and the invasive, nonindigenous species Rosa multiflora and Euonymus alatus within a suburban forest understory in New Jersey, USA, in unfenced plots and plots fenced for 5.3 years. We did untargeted metabolomics by sampling leaves from three plants of each species per 6-7 fenced and unfenced plots, conducting chloroform-methanol extractions followed by LC-MS/MS, and conducting statistical analysis on Metaboanalyst. We also scored each species for deer browse frequency over eight years, and compared their heights and percent cover between unfenced and fenced plots. The analysis identified 2,333 metabolites. The global metabolome diverged significantly between fenced and unfenced plots pooled across species, but for individual species only N. sylvatica exhibited a significant fencing effect. Nyssa sylvatica was one of the most browsed species and was the only one with both greater cover and height in fenced plots, suggesting greater susceptibility to deer browsing. The metabolites most responsible for the fenced/unfenced divergence also were affected by the species-fencing combination, with increases in certain species but decreases in others. The most significant metabolites that were upregulated in fenced plants include some involved in defense-related metabolic pathways, e.g. monoterpenoid biosynthesis. Further study of more species in multiple sites is needed to learn how common metabolomic responses to deer are among forest species, how the intensity of deer pressure influences the responses, which types of metabolites are most affected, and if there are ecological consequences at the physiological, population, and/or community levels.


2021 ◽  
Author(s):  
William Gaudry ◽  
Jean-Michel Gaillard ◽  
Sonia Saïd ◽  
Anders Mårell ◽  
Christophe Baltzinger ◽  
...  

Browsing damage in forests relies on a complex interaction between herbivore density and both forest understory composition and relative availability. Although variation in the amount of browsed twigs is sometimes used to assess abundance of large herbivores, the potential confounding effect of resource availability on this relationship has not yet been investigated. To fill the gap, we measured how browsing intensity of the woody plants varied in response to changes in both roe deer (Capreolus capreolus) abundance and vegetation availability from an intensive long-term monitoring. We estimated plant availability and consumption by roe deer from a modified Aldous method throughout a 14 yearlong period during which we experimentally manipulated population density. The functional response was strongly non-linear and density-dependent. When plant availability was low (< 12.5%), browsing intensity strongly increased with plant availability with an increasing rate with roe deer density, whereas beyond this threshold, browsing intensity slightly increased with both plant availability and population density in an additive way. Thus, forest susceptibility to browsing increases with increasing competition for food, especially when plant availability is low. Moreover, the interplay between browsing intensity and population density at low plant availability prevents the use of browsing intensity to monitor roe deer abundance when plant availability is low. Our findings provide clear evidence that relying on key ecological concepts such as functional responses improves the accuracy of management tools when monitoring changes of the herbivore-plant system over time.


2021 ◽  
Vol 13 (21) ◽  
pp. 4455
Author(s):  
Mait Lang ◽  
Andres Kuusk ◽  
Kersti Vennik ◽  
Aive Liibusk ◽  
Kristina Türk ◽  
...  

The important variable of horizontal visibility within forest stands is gaining increasing attention in studies and applications involving terrestrial laser scanning (TLS), photographic measurements of forest structure, and autonomous mobility. We investigated distributions of visibility distance, open arc length, and shaded arc length in three mature forest stands. Our analysis was based (1) on tree position maps and TLS data collected in 2013 and 2019 with three different scanners, and (2) on simulated digital twins of the forest stands, constructed with two pattern-generation models incorporating commonly used indices of tree position clumping. The model simulations were found to yield values for visibility almost identical to those calculated from the corresponding tree location maps. The TLS measurements, however, were found to diverge notably from the simulations. Overall, the probability of free line of sight was found to decrease exponentially with distance to target, and the probabilities of open arc length and shaded arc length were found to decrease and increase, respectively, with distance from the observer. The TLS measurements, which are sensitive to forest understory vegetation, were found to indicate increased visibility after vegetation removal. Our chosen visibility prediction models support practical forest management, being based on common forest inventory parameters and on widely used forest structure indices.


2021 ◽  
Author(s):  
Laura Y Podzikowski ◽  
Marissa Lee ◽  
Catherine Fahey ◽  
Justin Wright ◽  
S. Luke Flory ◽  
...  

Abstract There is an increasing need to better understand how and why invasion impacts differ across heterogeneous landscapes. One hypothesis predicts invader impacts are greatest where the invader is most abundant (the mass ratio hypothesis; MRH). Alternatively, invader impacts may be greatest in communities where the nutrient acquisition strategies of the invader are most dissimilar from those of native species (the nutrient economy dissimilarity hypothesis; NEDH). We tested whether the effects of an invasive grass, Microstegium vimineum, on soil biogeochemistry were best explained by MRH, NEDH, or both. At three locations (Indiana, North Carolina, and Georgia), invaded and reference plots were established across a nutrient economy gradient. Plots varied in the relative abundance of arbuscular mycorrhizal (AM) vs. ectomycorrhizal (ECM) associated overstory trees, reflecting gradients in biotic nutrient acquisition strategies and edaphic factors. At two locations, we found NEDH predicted invader effects on soil conditions. The net effect of M. vimineum homogenized soil properties across the nutrient economy gradient towards conditions consistent with AM-dominated stands; as such, the nutrient economy gradients observed in uninvaded plots were mostly absent in invaded plots. At one location with high N availability and intermediate acidity, both ECM-dominance (NEDH) and invader abundance (MRH) predicted differences in soil moisture, pH, and nitrification rates. Collectively, these results suggest the biogeochemical consequences of M. vimineum depend, in part, on pre-invasion soil nutrient economies. Where pre-invasion conditions are known, we provide a scalable and predictive approach to determine where impacts on biogeochemical cycling of C and N may be greatest.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2252
Author(s):  
Krishan Kaushik ◽  
Alessandro Bricca ◽  
Michele Mugnai ◽  
Daniele Viciani ◽  
Kinga Rudolf ◽  
...  

The herb layer plays a significant role in maintaining forest functions, and its community composition is determined by various abiotic factors and biotic interactions. This study attempted to investigate the interspecific plant–plant biotic interactions using a functional traits approach. Specifically, the effects of a dominant species coverage on the functional diversity of coexisting species in the temperate forest understory were studied. Species coverage and soil moisture data were collected using a 1 m2 quadrat couplet (2 × 1 m2) from six sites alongside a 20 m linear transect encompassing a cover gradient of Allium ursinum in southwest Hungary. Major plant functional dimensions i.e., aboveground, and clonal functional traits were considered. Linear and nonlinear mixed models to quantify the effects of biotic interaction on the functional diversity of every single trait and multiple traits were employed. Both aboveground traits and clonal traits of persistent clonal growth organs responded positively to the A. ursinum L., cover gradient. The coexistence of understory species in the presence of a monodominant species seems to be mainly influenced by aboveground traits as compared to the clonal traits suggesting, a role of niche differentiation. The consistent impact of A. ursinum coverage on coexisting species dynamics highlights a need for similar in-depth studies in various forest settings.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Caroline G. Borden ◽  
Marlyse C. Duguid ◽  
Mark S. Ashton

Abstract Background Over the last century, fire exclusion has caused dramatic structural and compositional changes to southern New England forests, highlighting the need to reintroduce fires into the historically pyrogenic landscape to study the response. We investigated the effects of a single overstory thinning and midstory removal to create an open oak-hickory woodland structure, followed by repeated prescribed burns. We hypothesized that burning would create greater floristic diversity comprising fire-tolerant woody regeneration and shade-intolerant herbaceous flora. We followed shifts in plant structure, composition, and diversity over a 23-year period, using a before-after-control-impact design with data collected once prior to burning and twice after burn treatments had begun and with soil samples collected after nearly 20 years of burning. Results We observed a dense ingrowth of saplings on unburned plots that were largely absent from burned plots and a shift in midstory composition to favor mesic sweet birch (Betula lenta L.) in the unburned treatment, as opposed to the hickories (Carya Nutt. spp.) and oaks (Quercus L. spp.) that dominated the burned treatment. Burning resulted in a significantly greater density, richness, Shannon diversity, and evenness of understory vegetation (forbs, shrubs, tree seedlings). These four measures remained high on burned plots, despite a decrease in both floristic diversity and evenness on unburned plots and a reduction in unburned site-level richness. Understory composition varied significantly by year and burn treatment, with unburned plots largely characterized by shade-tolerant species while burned plots showed an enhanced abundance of heliophilic plants. Conclusions Our results suggest that periodic burning increases nutrient microsite heterogeneity and periodically maintains greater understory light, both of which in turn increase understory plant density and diversity and cause a shift in understory composition. This study shows that repeated prescribed burns in an open New England woodland have lasting structural and compositional effects capable of restoring pre-settlement, pyrogenic vegetation patterns.


Author(s):  
Beata Woziwoda ◽  
Marcin K. Dyderski ◽  
Agnieszka Parzych ◽  
Jerzy Jonczak ◽  
Andrzej M. Jagodziński

AbstractForest transformation from coniferous monocultures to mixed stands is being promoted worldwide, including the introduction of fast-growing broadleaved tree species within native stands. Here, we studied how enrichment of temperate European Scots pine (Pinus sylvestris) forest by North-American northern red oak Quercus rubra impacted macronutrient concentrations in two long-lived and dominant components of the forest understory: bilberry Vaccinium myrtillus and lingonberry V. vitis-idaea. Study sites were located in forest complexes (central Poland) which occupy continuously reforested lands (hereafter ancient forests) as well as post-agricultural lands (recent forests), all suitable for mesic pine forests. Samples of bilberry and lingonberry leaves, stems, and fruits were collected in pine stands and in adjacent Scots pine-red oak stands, in both ancient and recent forests. Concentrations of macronutrients (C, N, P, K, Ca, S, and Mg) in aboveground biomass components were analysed using standardized chemical procedures. The study revealed intra- and interspecific (bilberry vs. lingonberry) differences in concentrations of all nutrients in leaves, stems, and fruits, except for invariable C concentrations. Macronutrient accumulations in plants were decreased by land-use discontinuity and favoured by enrichment of tree stands by Q. rubra. The estimated macronutrient pools were much higher for V. myrtillus than V. vitis-idaea in all forest types studied. They were lower in forests enriched with Q. rubra, both ancient (up to 25.5% for bilberry and 99.9% for lingonberry) and recent (46.9% and 99.9%, respectively), as well as in recent pine forest (46.6% and 81.1%, respectively) than in ancient pine forest. Higher K and S pools (39.3% and 6.5%, respectively) noted for bilberry in an ancient forest with Q. rubra were exceptions. Despite more effective accumulations of elements at the species level, macronutrient pools of Vaccinium myrtillus and V. vitis-idaea decreased significantly in the presence of introduced Q. rubra due to negative impacts of this broadleaved tree on bilberry and lingonberry cover and biomass. Therefore, the limitation of alien Q. rubra planting in sites of mesic pine forest with the abundant occurrence of V. myrtillus and/or V. vitis-idaea is recommended. Graphic abstract


2021 ◽  
Author(s):  
Franziska M. Willems ◽  
J. F. Scheepens ◽  
Oliver Bossdorf

AbstractSome of the most striking biological responses to climate change are the observed shifts in the timing of life-history events of many organisms. Plants, in particular, often flower earlier in response to climate warming, and herbarium specimens are excellent witnesses of such long-term changes. However, in large-scale analyses the magnitude of phenological shifts may vary geographically, and the data are often clustered, and it is thus necessary to account for spatial correlation to avoid geographical biases and pseudoreplication. Here, we analysed herbarium specimens of 20 spring-flowering forest understory herbs to estimate how their flowering phenology shifted across Europe during the last century. Our analyses show that on average these forest wildflowers now bloom over six days earlier than at the beginning of the last century. These changes were strongly associated with warmer spring temperatures. Plants flowered on average of 3.6 days earlier per 1°C warming. However, in some parts of Europe plants flowered earlier or later than expected. This means, there was significant residual spatial variation in flowering time across Europe, even after accounting for the effects of temperature, precipitation, elevation and year. Including this spatial autocorrelation into our statistical models significantly improved model fit and reduced bias in coefficient estimates. Our study indicates that forest wildflowers in Europe strongly advanced their phenology in response to climate change during the last century, with potential severe consequences for their associated ecological communities. It also demonstrates the power of combining herbarium data with spatial modelling when testing for long-term phenology trends across large spatial scales.


Sign in / Sign up

Export Citation Format

Share Document