modulated dsc
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 17)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
pp. 41-128
Author(s):  
El-Zeiny M. Ebeid ◽  
Mohamed B. Zakaria

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yu Chen ◽  
Irina Tatiana Garces ◽  
Tian Tang ◽  
Cagri Ayranci

Purpose The purpose of this paper is to demonstrate an innovative, fast and low-cost method to fabricate customized stents using polyurethane-based shape memory polymers composite reinforced by cellulose nanocrystal (CNC), achieved by a commercial desktop extrusion-based additive manufacturing (EBAM) device. Design/methodology/approach The composite filament for printing the stents was prepared by a two-step melt-compounding extrusion process. Afterward, the stents were produced by a desktop EBAM printer. Thermal characterizations, including thermo-gravimetric analysis (TGA) and modulated differential scanning calorimetry (modulated DSC), were conducted on stent samples and filament samples, respectively. Then the stents were programmed under 45°C. Recovery characterizations, including recovery force and recovery ratio measurement, were conducted under 40°C. Findings TGA results showed that the materials were stable under the printing temperature. Modulated DSC results indicated that, with the addition of CNCs, the glass transition temperature of the material dropped slightly from 39.7°C at 0 Wt.% CNC to 34.2°C at 7 Wt.% CNC. The recovery characterization showed that the stents can exert a maximum recovery force of 0.4 N/mm when 7 Wt.% of CNCs were added and the maximum recovery ratio of 35.8% ± 5.1% was found when 4 Wt.% of CNCs were added. The addition of CNC improved both the recovery ratio and the recovery force of the as-prepared stents. Originality/value In terms of recovery force, the as-prepared stents out-performed commercially available stents by 30 times. In addition, additive manufacturing offers more flexibility in the design and fabrication of customized cardiovascular stents.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 800
Author(s):  
Agata Drogoń ◽  
Marcin Skotnicki ◽  
Agnieszka Skotnicka ◽  
Marek Pyda

The objective of this study was to characterise amorphous indapamide (IND) subjected to the physical ageing process by differential scanning calorimetry (DSC). The amorphous indapamide was annealed at different temperatures below the glass transition, i.e., 35, 40, 45, 65, 75 and 85 °C for different lengths of time, from 30 min up to a maximum of 32 h. DSC was used to characterise both the crystalline and the freshly prepared glass and to monitor the extent of relaxation at temperatures below the glass transition (Tg). No ageing occurred at 35, 40 and 45 °C at the measured lengths of times. Molecular relaxation time constants (τKWW) for samples aged at 65, 75 and 85 °C were determined by the Kohlrausch-Williams-Watts (KWW) equation. The fragility parameter m (a measure of the stability below the glass transition) was determined from the Tg dependence from the cooling and heating rates, and IND was found to be relatively stable (“moderately fragile”) in the amorphous state. Temperature-modulated DSC was used to separate reversing and nonreversing processes for unaged amorphous IND. The enthalpy relaxation peak was clearly observed as a part of the nonreversing signal. Heat capacities data for unaged and physically aged IND were fitted to Cp baselines of solid and liquid states of IND, were integrated and enthalpy was presented as a function of temperature.


Sign in / Sign up

Export Citation Format

Share Document