water dissociation
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 176)

H-INDEX

42
(FIVE YEARS 14)

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Yaoda Liu ◽  
Paranthaman Vijayakumar ◽  
Qianyi Liu ◽  
Thangavel Sakthivel ◽  
Fuyi Chen ◽  
...  

Highlights This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure–activity relationship. Abstract Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.


2022 ◽  
Vol 641 ◽  
pp. 119899
Author(s):  
Arturo Ortega ◽  
Luis F. Arenas ◽  
Joep J.H. Pijpers ◽  
Diana L. Vicencio ◽  
Juan C. Martínez ◽  
...  

Author(s):  
Rendian Wan ◽  
Mi Luo ◽  
Jingbo Wen ◽  
Shilong Liu ◽  
Xiongwu Kang ◽  
...  

Author(s):  
Ruofan Shen ◽  
Yanyan Liu ◽  
Hao Wen ◽  
Tao Liu ◽  
Zhikun Peng ◽  
...  

2021 ◽  
Author(s):  
Ireneusz Miesiac ◽  
Beata Rukowicz

AbstractThe traditional view of the conductivity of electrolytes is based on the mobility of ions in an electric field. A new concept of water conductivity introduces an electron–hole mechanism known from semiconductor theory. The electrolyte ions in the hydrogen bond network of water imitate the structure of a doped silicon lattice. The source of the current carriers is the electrode reaction generating H+ and OH− ions. The continuity of current flow is provided through the electron–hole mechanism, and the movement of electrolyte ions is only a side process. Bipolar membrane in the semiconductor approach is an electrochemical diode forward biased. Generation of large amounts of H+ and OH− has to be considered as a result of current flow and does not require any increase in the water dissociation rate. Bipolar membranes are essential in electrodialysis stacks for the recovery of acids and bases by salt splitting. Graphic Abstract


Small ◽  
2021 ◽  
pp. 2105588
Author(s):  
Ruofan Shen ◽  
Yanyan Liu ◽  
Hao Wen ◽  
Xianli Wu ◽  
Guosheng Han ◽  
...  

2021 ◽  
pp. 2109556
Author(s):  
Qizhou Dai ◽  
Lin Wang ◽  
Kexin Wang ◽  
Xiahan Sang ◽  
Zhongjian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document