boreal lakes
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 73)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 1 ◽  
Author(s):  
Nicolas F. St-Gelais ◽  
Richard J. Vogt ◽  
Paul A. del Giorgio ◽  
Beatrix E. Beisner

2021 ◽  
Vol 25 (12) ◽  
pp. 6309-6332
Author(s):  
Maxime P. Boreux ◽  
Scott F. Lamoureux ◽  
Brian F. Cumming

Abstract. While interactions between groundwater and lake-water influence water chemistry, water balance, aquatic organisms, biochemical cycles and contamination levels, they remain a poorly studied component of lake hydrology. Identifying the controls of groundwater and lake-water interactions at the landscape level and classifying lakes into categories based on their degree of interaction with the groundwater can provide insights into a lake's sensitivity and vulnerability to environmental stressors. Such information can also provide baseline conditions for comparison to future changes that are important for water management and conservation. To this end, water chemistry and water isotopic composition were investigated in a set of 50 boreal lakes located at different elevations in an esker system near Timmins, Ontario. Analyses focused on stable isotopic ratios of hydrogen and oxygen and specific conductance as indicators of the position of a lake with respect to the influence of groundwater. Both isotopic composition and specific conductance distinguished higher-elevation groundwater-recharge lakes from lower-elevation groundwater-discharge lakes. Groundwater-recharge lakes were high-elevation lakes characterized by enriched isotopic values and low values of specific conductance. In contrast, groundwater-discharge lakes were isotopically depleted and had higher values of specific conductance and occurred at lower elevations. An intermediate group of lakes was also defined (termed seepage lakes) and had intermediate isotopic and water-chemistry characteristics compared to recharge and discharge lakes. Differences in water geochemistry between field campaigns revealed that upland groundwater-recharge lakes showed evidence of evaporative drawdown, indicating sensitivity to short-term changes in climate, whereas the lower-elevation groundwater-discharge lakes showed little variation between seasonal samples and consequently would likely be affected only by hydroclimatological changes of greater duration and magnitude.


2021 ◽  
Author(s):  
Martin Taubert ◽  
Will A. Overholt ◽  
Beatrix M. Heinze ◽  
Georgette Azemtsop Matanfack ◽  
Rola Houhou ◽  
...  

AbstractCurrent understanding of organic carbon inputs into ecosystems lacking photosynthetic primary production is predicated on data and inferences derived almost entirely from metagenomic analyses. The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 fixation is an integral component of subsurface trophic webs. To understand the impact of autotrophically fixed carbon, the flux of CO2-derived carbon through various populations of subsurface microbiota must first be resolved, both quantitatively and temporally. Here we implement novel Stable Isotope Cluster Analysis to render a time-resolved and quantitative evaluation of 13CO2-derived carbon flow through a groundwater community in microcosms stimulated with reduced sulfur compounds. We demonstrate that mixotrophs, not strict autotrophs, were the most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the production and remineralization of organic carbon. Their activity facilitated the replacement of 43% and 80% of total microbial carbon stores in the groundwater microcosms with 13C in just 21 and 70 days, respectively. The mixotrophs employed different strategies for satisfying their carbon requirements by balancing CO2 fixation and uptake of available organic compounds. These different strategies might provide fitness under nutrient-limited conditions, explaining the great abundances of mixotrophs in other oligotrophic habitats, such as the upper ocean and boreal lakes.


Author(s):  
Emad A. Albakistani ◽  
Felix C. Nwosu ◽  
Chantel Furgason ◽  
Evan S. Haupt ◽  
Angela V. Smirnova ◽  
...  

Base Mine Lake (BML) is the first full-scale demonstration end pit lake for the oil sands mining industry in Canada. We examined aerobic methanotrophic bacteria over all seasons for five years in this dimictic lake. Methanotrophs comprised up to 58% of all bacterial reads in 16S rRNA gene amplicon sequencing analyses (median 2.8%), and up to 2.7 × 10 4 cells mL −1 of water (median 0.5 × 10 3 ) based on qPCR of pmoA genes. Methanotrophic activity and populations in the lake water were highest during fall turnover, and remained high through the winter ice-covered period into spring turnover. They declined during summer stratification, especially in the epilimnion. Three methanotroph genera ( Methylobacter , Methylovulum , and Methyloparacoccus ) cycled seasonally, based on both relative and absolute abundance measurements. Methylobacter and Methylovulum populations peaked in winter/spring, when methane oxidation activity was psychrophilic. Methyloparacoccus populations increased in the water column through summer and fall, when methane oxidation was mesophilic, and also predominated in the underlying tailings sediment. Other, less abundant genera grew primarily during summer, possibly due to distinct CH 4 /O 2 microniches created during thermal stratification. These data are consistent with temporal and spatial niche differentiation based on temperature, CH 4 and O 2 . This pit lake displays methane cycling and methanotroph population dynamics similar to natural boreal lakes. Importance statement: The study examined methanotrophic bacteria in an industrial end pit lake, combining molecular DNA methods (both quantitative and descriptive) with biogeochemical measurements. The lake was sampled over 5 years, in all four seasons, as often as weekly, and included sub-ice samples. The resulting multi-season and multi-year dataset is unique in its size and intensity, and allowed us to document clear and consistent seasonal patterns of growth and decline of three methanotroph genera ( Methylobacter , Methylovulum , and Methyloparacoccus ). Laboratory experiments suggested that one major control of this succession was niche partitioning based on temperature. The study helps to understand microbial dynamics in engineered end-pit lakes, but we propose that the dynamics are typical of boreal stratified lakes, and widely applicable in microbial ecology and limnology. Methane oxidising bacteria are important model organisms in microbial ecology, and have implications for global climate change.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Petri Kesti ◽  
Minna Hiltunen ◽  
Ursula Strandberg ◽  
Jussi Vesterinen ◽  
Sami Taipale ◽  
...  

AbstractMany lakes in the northern hemisphere are browning due to increasing concentrations of terrestrial dissolved organic carbon (DOC). The consequences of lake browning to littoral invertebrates, however, are not fully understood. We analyzed community structure and fatty acid (FA) profiles of littoral invertebrates in humic (DOC-rich) and clear-water lakes in Eastern Finland. We found higher abundance of chironomids (Diptera: Chironomidae) in humic compared to clear-water lakes, whereas stoneflies (Plecoptera) and mayflies (Ephemeroptera: Baetidae) were more abundant in clear-water lakes. Taxon explained 65% of the differences in the FA composition of littoral invertebrates. However, the proportion and content of polyunsaturated FAs of several taxa were significantly higher in clear-water lakes compared to humic lakes. Our results reveal differences in both community structure and nutritional quality of littoral invertebrates for fish between humic and clear-water lakes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jonathan Schenk ◽  
Henrique O. Sawakuchi ◽  
Anna K. Sieczko ◽  
Gustav Pajala ◽  
David Rudberg ◽  
...  

Methane (CH4) is an important component of the carbon (C) cycling in lakes. CH4 production enables carbon in sediments to be either reintroduced to the food web via CH4 oxidation or emitted as a greenhouse gas making lakes one of the largest natural sources of atmospheric CH4. Large stable carbon isotopic fractionation during CH4 oxidation makes changes in 13C:12C ratio (δ13C) a powerful and widely used tool to determine the extent to which lake CH4 is oxidized, rather than emitted. This relies on correct δ13C values of original CH4 sources, the variability of which has rarely been investigated systematically in lakes. In this study, we measured δ13C in CH4 bubbles in littoral sediments and in CH4 dissolved in the anoxic hypolimnion of six boreal lakes with different characteristics. The results indicate that δ13C of CH4 sources is consistently higher (less 13C depletion) in littoral sediments than in deep waters across boreal and subarctic lakes. Variability in organic matter substrates across depths is a potential explanation. In one of the studied lakes available data from nearby soils showed correspondence between δ13C-CH4 in groundwater and deep lake water, and input from the catchment of CH4via groundwater exceeded atmospheric CH4 emissions tenfold over a period of 1 month. It indicates that lateral hydrological transport of CH4 can explain the observed δ13C-CH4 patterns and be important for lake CH4 cycling. Our results have important consequences for modelling and process assessments relative to lake CH4 using δ13C, including for CH4 oxidation, which is a key regulator of lake CH4 emissions.


2021 ◽  
Author(s):  
Oleg P. Savchuk ◽  
Alexey V. Isaev ◽  
Nikolay N. Filatov

Abstract. Despite a long history of research, there is almost no information regarding the major biogeochemical fluxes that could characterize the past and present state of the European Lake Onego ecosystem and be used for reliable prognostic estimates of its future. To enable such capacity, we adapted and implemented a three-dimensional coupled hydrodynamical biogeochemical model of the nutrient cycles in Lake Onego. The model was used to reconstruct three decades of Lake Onego ecosystem dynamics with daily resolution on a 2 × 2 km grid. A comparison of available information from Lake Onego and other large boreal lakes proves that this hindcast is plausible enough to be used as a form of reanalysis. As new regional phenological knowledge, the reanalysis quantifies that the spring phytoplankton bloom, previously overlooked, reaches a maximum of 500 ± 128 mg C m−2 d−1 in May, contributes to approximately half of the lake’s annual primary production of 17.0–20.6 g C m−2 yr−1, and is triggered by increasing light availability rather than by an insignificant rise in water temperature. Coherent nutrient budgets provide reliable estimates of phosphorus and nitrogen residence times of 47 and 17 years, respectively. The shorter nitrogen residence time is explained by sediment denitrification, which in Lake Onego removes over 90 % of the bioavailable nitrogen input, but is often ignored in studies of other large lakes. This model can be used for long-term projections as soon as the corresponding scenarios of climate change and socio-economic development become available for north-western Russia.


2021 ◽  
Vol 232 (9) ◽  
Author(s):  
Martti Rask ◽  
Tommi Malinen ◽  
Mikko Olin ◽  
Kari Nyberg ◽  
Jukka Ruuhijärvi ◽  
...  

AbstractHigh dissolved organic carbon and low pH are often associated with elevated mercury content of fish in boreal lakes, but less is known about the fish mercury dynamics in lakes recovering from acidification stress. We measured total mercury concentration (THg) in muscle of European perch (Perca fluviatilis) and evaluated the overall correlation with environmental and growth variables in 24 boreal headwater lakes in the 2010s. We found negative correlations of length-corrected perch THg with lake pH and perch growth, but no correlation with dissolved organic carbon. The main emphasis in the present study was focused to a subset of ten lakes in southern Finland with known perch THg during severe acidification in the 1980–1990s. The comparison of perch THg concentrations in the 2010s with values determined in the 1980–1990s showed a sharp increase in most acidic lakes where the perch populations suffered from severe acid stress in the 1980s. This increase was attributed to growth condensation caused by sharp decrease in perch growth during recovery of reproduction capacity and the consequent increases in population densities of perch. Our results highlight the importance of perch growth rate and population density for understanding the variability of fish Hg in boreal headwater lakes, where recovery from acidification can lead to higher mercury concentration of fish in certain cases.


2021 ◽  
Vol 18 (16) ◽  
pp. 4791-4816
Author(s):  
Stuart A. Vyse ◽  
Ulrike Herzschuh ◽  
Gregor Pfalz ◽  
Lyudmila A. Pestryakova ◽  
Bernhard Diekmann ◽  
...  

Abstract. Lakes act as important sinks for inorganic and organic sediment components. However, investigations of sedimentary carbon budgets within glacial lakes are currently absent from Arctic Siberia. The aim of this paper is to provide the first reconstruction of accumulation rates, sediment and carbon budgets from a lacustrine sediment core from Lake Rauchuagytgyn, Chukotka (Arctic Siberia). We combined multiple sediment biogeochemical and sedimentological parameters from a radiocarbon-dated 6.5 m sediment core with lake basin hydroacoustic data to derive sediment stratigraphy, sediment volumes and infill budgets. Our results distinguished three principal sediment and carbon accumulation regimes that could be identified across all measured environmental proxies including early Marine Isotope Stage 2 (MIS2) (ca. 29–23.4 ka cal BP), mid-MIS2–early MIS1 (ca. 23.4–11.69 ka cal BP) and the Holocene (ca. 11.69–present). Estimated organic carbon accumulation rates (OCARs) were higher within Holocene sediments (average 3.53 g OC m−2 a−1) than Pleistocene sediments (average 1.08 g OC m−2 a−1) and are similar to those calculated for boreal lakes from Quebec and Finland and Lake Baikal but significantly lower than Siberian thermokarst lakes and Alberta glacial lakes. Using a bootstrapping approach, we estimated the total organic carbon pool to be 0.26 ± 0.02 Mt and a total sediment pool of 25.7 ± 1.71 Mt within a hydroacoustically derived sediment volume of ca. 32 990 557 m3. The total organic carbon pool is substantially smaller than Alaskan yedoma, thermokarst lake sediments and Alberta glacial lakes but shares similarities with Finnish boreal lakes. Temporal variability in sediment and carbon accumulation dynamics at Lake Rauchuagytgyn is controlled predominantly by palaeoclimate variation that regulates lake ice-cover dynamics and catchment glacial, fluvial and permafrost processes through time. These processes, in turn, affect catchment and within-lake primary productivity as well as catchment soil development. Spatial differences compared to other lake systems at a trans-regional scale likely relate to the high-latitude, mountainous location of Lake Rauchuagytgyn.


Sign in / Sign up

Export Citation Format

Share Document