meristem culture
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
E. V. Ambros ◽  
E. I. Chertenkova ◽  
S. Y. Toluzakova ◽  
E. G. Trofimova ◽  
T. I. Novikova

The initiation of strawberries into in vitro culture is known to be complicated by the inhibition of organogenesis by phenolic oxidation products. An important role in this process is given to the selection of growth regulators that increase meristematic cell activity and shoot proliferation at the stage of organogenesis induction. The present study aims to obtain a viable apical meristem culture of garden strawberry and to study the effect of different antioxidants (reduced glutathione (RG); a new preparation, i.e., a mechanical composite (MC) on the basis of biogenic silicon and green tea catechins and plant growth regulators (6-benzylaminopurine; thidiazuron) on the initiation of axillary shoot formation in strawberry meristem culture. Terminal buds containing an apical meristem and two leaf primordia isolated from the stolons of two garden strawberry cultivars (Sunny Meadow and Festival Chamomile) were used as primary explants for the initiation of strawberries into in vitro culture. It was found for the first time that the MC exhibits higher antioxidant activity as compared to reduced glutathione, reduces darkening of initial explants, as well as enhancing regeneration up to 13.0% at p ≤ 0.05. Furthermore, the best effect on the formation of microshoots per explant is observed toward the end of material introduction into in vitro culture when combining the MC with growth regulators in the culture medium. Here, the effect of strawberry cultivar on explant regeneration and the number of microshoots per explant are insignificant. It is concluded that the procedure for using the MC as an effective antioxidant during material initiation into the culture can be applied to the large-scale in vitro propagation of garden strawberries. Moreover, the technology for obtaining the MC from plant waste is environmentally friendly, which is a significant advantage for its use in in vitro technologies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Janesse E. Holmes ◽  
Samantha Lung ◽  
Danielle Collyer ◽  
Zamir K. Punja

Tissue culture approaches are widely used in crop plants for the purposes of micropropagation, regeneration of plants through organogenesis, obtaining pathogen-free plantlets from meristem culture, and developing genetically modified plants. In this research, we evaluated variables that can influence the success of shoot growth and plantlet production in tissue cultures of drug-type Cannabis sativa L. (marijuana). Various sterilization methods were tested to ensure shoot development from nodal explants by limiting the frequency of contaminating endophytes, which otherwise caused the death of explants. Seven commercially grown tetrahydrocannabinol (THC)-containing cannabis genotypes (strains) showed significant differences in response to shoot growth from meristems and nodal explants on Murashige and Skoog (MS) medium containing thidiazuron (1 μM) and naphthaleneacetic acid (0.5 μM) plus 1% activated charcoal. The effect of Driver and Kuniyuki Walnut (DKW) or MS basal salts in media on shoot length and leaf numbers from nodal explants was compared and showed genotype dependency with regard to the growth response. To obtain rooted plantlets, shoots from meristems and nodal explants of genotype Moby Dick were evaluated for rooting, following the addition of sodium metasilicate, silver nitrate, indole-3-butyric acid (IBA), kinetin, or 2,4-D. Sodium metasilicate improved the visual appearance of the foliage and improved the rate of rooting. Silver nitrate also promoted rooting. Following acclimatization, plantlet survival in hydroponic culture, peat plugs, and rockwool substrate was 57, 76, and 83%, respectively. The development of plantlets from meristems is described for the first time in C. sativa and has potential for obtaining pathogen-free plants. The callogenesis response of leaf explants of 11 genotypes on MS medium without activated charcoal was 35% to 100%, depending on the genotype; organogenesis was not observed. The success in recovery of plantlets from meristems and nodal explants is influenced by cannabis genotype, degree of endophytic contamination of the explants, and frequency of rooting. The procedures described here have potential applications for research and commercial utility to obtain plantlets in stage 1 tissue cultures of C. sativa.


2021 ◽  
Vol 31 (3) ◽  
pp. 617-627
Author(s):  
Nesrin KARACA SANYÜREK ◽  
Atilla ÇAKIR ◽  
Gökhan SÖYLEMEZOĞLU

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Juraj Faragó ◽  
Ivana Pšenáková ◽  
Natália Faragová

Hop (Humulus lupulus L.) is a clonally propagated, dioecious, perennial, climbing plant used commercially for their secondary metabolites. The resins containing α- and β-acids, and essential oils produced by the lupulin glands, present on the female flowers are used to add bitterness, aroma and flavour to beer. Recently, flavonoids, including chalcones and flavanones, of hops have been shown to exert a variety of biological activities, including oestrogenic and anticancerogenic characteristics. In this review, we provide a overview of the techniques and opportunities presented by the integration of plant biotechnology into hop improvement. The use of tissue culture techniques such as micropropagation, meristem culture, in vitro storage, adventitious shoot induction, callus culture and cell suspension culture in hops are briefly reviewed. The usefullness of genetic transformation technology to introduce novel traits into hop is also discussed.


2021 ◽  
Vol 35 (3) ◽  
pp. 285-292
Author(s):  
Secil Kivrak Kiran ◽  
Selin Galatali ◽  
Sevil Yeniocak ◽  
Damla Ekin Ozkaya ◽  
Taner Mercan ◽  
...  

Cultivation of Corylus avellana L. in Turkey is performed generally in the northern regions where it is an important source of livelihood for the local farmers. More than 70% of world hazelnut production is supplied by Turkey, but compared with other countries, Turkey’s hazelnut production area is quite narrow. In this study was aimed to develop an effective in vitro production for seven local cultivars of C. avellana. Therefore, WPM medium supplemented with 6-Benzylaminopurine (BAP) was modified by using single or in combination of Fe-EDDHA, AgNO3, H3BO3, charcoal and gibberellic acid. In all varieties, the best regeneration rates varying between 68% and 94% were obtained from WPM medium supplemented with 4.4 µM BAP, 27.8 µM Fe-EDDHA and 10g/L Charcoal. Genetic stability of shoots derived from meristem culture using the best medium was analysed using ISSR primers, when the gel images of the PCR products were examined, no polymorphic band was observed in samples collected from seven provinces, and the genetic stability was determined as 100%.


Author(s):  
Cattarin Theerawitaya ◽  
Myo Myat Myat Kyaw ◽  
Thapanee Samphumphuang ◽  
Umpawa Pinruan ◽  
Natthawut Wiriyathanawudhiwong ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1395
Author(s):  
Zvjezdana Marković ◽  
Anđela Zrilić ◽  
Iva Šikuten ◽  
Petra Štambuk ◽  
Ivana Tomaz ◽  
...  

The population of Croatian autochthonous cultivars has a high degree of infection with economically important viruses, so it is necessary to carry out the elimination of the viruses in some cultivars to obtain healthy planting material. In this research, we tested in vitro meristem culture establishment on 18 autochthonous cultivars with different viral infections and the possibility of GLRaV-3 elimination through in vitro meristem culture. Plant material was sampled in a vineyard in two phenological stages, 10 days before flowering and 10 days after flowering of the grapevine. Apical meristem explants (1 mm) were placed into the MS culture medium supplemented with 0.5 mg/L benzyl adenine (BA) and 0.05 mg/L indol-3-acetic acid (IAA), and their survival, regeneration, and rooting were monitored. The results showed that the cultivar and the growth phase have a significant impact on the success of in vitro culture. In all cultivars studied higher success of in vitro culture establishment parameters (survival, regeneration, and rooting) was obtained in the case of explants sampled after flowering, with the exception of one cultivar for explants survival. Contrary to expectations, genotypes infected with three viruses (GLRaV-1, GLRaV-3, and GFLV) showed better results than genotypes infected with one or two viruses. The results showed successful in vitro establishment of Croatian autochthonous cultivar and GRLaV-3 elimination in one cultivar. However, due to the significant effect of cultivar, for routine application of this in vitro protocol on more than 100 autochthonous cultivars in need of sanitation, further studies should be conducted.


2021 ◽  
Vol 2 (3) ◽  
pp. 79-84
Author(s):  
S. Galatali ◽  
M. A. Balci ◽  
O. Akguller ◽  
E. Kaya

It is an inevitable fact that the applications of machine learning and artificial intelligence technologies in agricultural biotechnology approaches, whose applications are increasing rapidly in almost every field, will have an important place in determining the future fate of agriculture. Applications in which artificial intelligence is adapted to biotechnological processes such as breeding, in vitro culture studies, germplasm preservation, disease-free plant production, genetic transformation, and other genetic analyzes are becoming increasingly common. In the current study is highlighted the potential benefits between artificial intelligence and agricultural technologies.  As with many plant species, viral diseases have negative effects on fruit yield, life span, and quality of olive varieties, which are important in economy. Elimination of viruses from the plant with traditional methods is quite laborious, takes a lot of time, and often fails to produce successful results. However, new protocols have been developed to eliminate persistent pathogens. These protocols include techniques such as heat application (thermotherapy), chemical therapy (chemotherapy), tissue culture methods (meristem culture). When these techniques are applied alone or together, it may be possible to obtain anti-virus plants.  Artificial intelligence technology will make it possible to benefit from the method to be used in the most efficient way by revealing which of these biotechnological methods can be used in the most effective and optimal conditions, and the possible advantages and disadvantages as a result of comparing with others.


2021 ◽  
Vol 18 (4) ◽  
pp. 679-691
Author(s):  
Hoang Thanh Tung ◽  
Hoang Dac Khai ◽  
Do Manh Cuong ◽  
Le Van Thuc ◽  
Le The Bien ◽  
...  

Artichoke (Cynara scolymus L.), a high economic value crop, was brought to Vietnam by the French in the late 19th century. The artichoke was mainly planted in Lam Dong, Lao Cai, Vinh Phuc provinces, etc. At present, the disease situation of Artichoke plants and the lack of disease-free seedlings result in insufficient source of Artichoke for producers. Artichoke plants are mainly vegetative propagation and pathogens easily transferred from mother to daughter plants. Therefore, low propagation rate and fungal infection are two main factors hindering the expansion and development of Artichoke cultivation (in Lam Dong). Therefore, studying and evaluating the situation of fungi and viruses as well as establishing the in vitro propagation procedures in order to produce high number of disease-free seedlings are urgent for the current Artichoke shortage. In this study, samples of purple and white Artichoke varieties, which suspected fungal manifestations, were collected to assessment of fungi and viruses in artichoke. In addition, in vitro propagation by cultivating apical meristem was applied to produce disease-free seedlings. The recorded results showed that, 19 strains of mold were identified on purple and white Artichoke belonged to nine genera including Mucor (M. sp., M. circinelloides, M. fragilis, M. irregularis, and M. racemosus), Alternaria (Alternaria sp., A. alterinata, A. gaisen, A. tenuissima, and A. tillandsiae), Fusarium (F. acuminatum and F. solani), Cylindrobasidium (Cylindrobasidium sp1 and Cylindrobasidium sp2), Actinomucor elegans, Curvalaria clavata, Plectosphaerella oligotrophica, Phoma herbarum, Rhizomucor variabillis; meanwhile, the Tomato mosaic virus (ToMV) was isolated only purple Artichoke. Shoot explants obtained from apical meristem culture were completely disease-free and used for micropropagation at the next stage.


Sign in / Sign up

Export Citation Format

Share Document