acidithiobacillus thiooxidans
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 52)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 216 ◽  
pp. 106375
Author(s):  
Roger Borges ◽  
Rodrigo Klaic ◽  
Cristiane Sanchez Farinas ◽  
Caue Ribeiro

2021 ◽  
Author(s):  
Ling Tan ◽  
Thomas Jones ◽  
Jianping Xie ◽  
Xinxing Liu ◽  
Gordon Southam

Abstract Weathering of the Merensky reef was enhanced under laboratory conditions by Fe- and S-oxidizing bacteria: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. These bacteria preferentially colonized pyrrhotite and pyrite, versus pentlandite and chalcopyrite (all of which were common within the rock substrate), promoting weathering. Weathering of base metal sulfides resulted in the precipitation of Fe oxides, Fe phosphate, and elemental sulfur as secondary minerals. Fe pyroxene weathered readily under acidic conditions and resulted in mineral dissolution, while other silicates (orthopyroxene and plagio-clase) precipitated Fe phosphate spherules or coatings on their surface. The deterioration of the platinum group metal (PGM) matrix (base metal sulfides and silicates) and the occurrence of a platinum grain associated with platinum nanoparticles observed in the biotic thin sections demonstrate that biogeochemical acid weathering is an important step in the active release of intact PGM grains. A platinum grain embedded in secondary Fe oxides/phosphate that had settled by gravity within the weathering solution demonstrates that secondary minerals that formed during weathering of PGM-hosting minerals also represent targets in PGM exploration by trapping and potentially slowing PGM migration. Dispersion halos surrounding or occurring downstream from PGM occurrences will likely produce two physical target classes—i.e., grains and colloids—under surficial weathering conditions.


2021 ◽  
Vol 111 ◽  
pp. 207-212
Author(s):  
Mathiyazhagan Narayanan ◽  
Devarajan Natarajan ◽  
Sabariswaran Kandasamy ◽  
Arunachalam Chinnathambi ◽  
Sulaiman Ali Alharbi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto A. Bobadilla-Fazzini ◽  
Ignacio Poblete-Castro

Biofilm formation within the process of bioleaching of copper sulfides is a relevant aspect of iron- and sulfur-oxidizing acidophilic microorganisms as it represents their lifestyle in the actual heap/dump mining industry. Here, we used biofilm flow cell chambers to establish laminar regimes and compare them with turbulent conditions to evaluate biofilm formation and mineralogic dynamics through QEMSCAN and SEM-EDS during bioleaching of primary copper sulfide minerals at 30°C. We found that laminar regimes triggered the buildup of biofilm using Leptospirillum spp. and Acidithiobacillus thiooxidans (inoculation ratio 3:1) at a cell concentration of 106 cells/g mineral on bornite (Cu5FeS4) but not for chalcopyrite (CuFeS2). Conversely, biofilm did not occur on any of the tested minerals under turbulent conditions. Inoculating the bacterial community with ferric iron (Fe3+) under shaking conditions resulted in rapid copper recovery from bornite, leaching 40% of the Cu content after 10 days of cultivation. The addition of ferrous iron (Fe2+) instead promoted Cu recovery of 30% at day 48, clearly delaying the leaching process. More efficiently, the biofilm-forming laminar regime almost doubled the leached copper amount (54%) after 32 days. In-depth inspection of the microbiologic dynamics showed that bacteria developing biofilm on the surface of bornite corresponded mainly to At. Thiooxidans, while Leptospirillum spp. were detected in planktonic form, highlighting the role of biofilm buildup as a means for the bioleaching of primary sulfides. We finally propose a mechanism for bornite bioleaching during biofilm formation where sulfur regeneration to sulfuric acid by the sulfur-oxidizing microorganisms is crucial to prevent iron precipitation for efficient copper recovery.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1166-1177
Author(s):  
Georgios Fytianos ◽  
Dimitra Banti ◽  
Esmeralda Dushku ◽  
Efthimios Papastergiadis ◽  
Minas Yiangou ◽  
...  

Concrete sewer pipes can be corroded by the biogenic sulfuric acid (H2SO4) generated from microbiological activities in a process called biocorrosion or microbiologically induced corrosion (MIC). In this study, inhibitors that can reduce Acidithiobacillus thiooxidans growth and thus may reduce the accumulation of biofilm components responsible for the biodegradation of concrete were used. D-tyrosine, tetrakis hydroxymethyl phosphonium sulfate (THPS) and TiO2 nanoparticles were investigated as potential inhibitors of sulfur-oxidizing bacteria (SOB) growth. Results showed that most of the chemicals used can inhibit SOB growth at a concentration lower than 100 mg/L. TiO2 nanoparticles exhibited the highest biocide effect and potential biocorrosion mitigation activity, followed by D-tyrosine and THPS.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1043
Author(s):  
Zihao Chen ◽  
Xin-Ying Huang ◽  
Huan He ◽  
Jie-Lin Tang ◽  
Xiu-Xiang Tao ◽  
...  

A mixed culture of A. ferrooxidans and A. thiooxidans isolated from a coal gangue dump was used to bioleach coal gangue in a column reactor to investigate the leaching of elements. The changes of metal ions (Fe, Mn and Cr) and sulfate in the leaching solution, elemental composition, mineral components and sulfur speciation of the coal gangue before and after bioleaching were analyzed by atomic absorption, anion chromatography, XRF, XRD and XPS. The results show that the mixed culture could promote the release of metal ions in coal gangue, with a leaching concentration of Fe > Mn > Cr. EC and Eh have significantly increased with the increase of metal ion concentrations in the leaching solution. XRF analyses show that the contents of Fe, Mn and S decreased in coal gangue after bioleaching. XRD results suggest that the bioleaching has impacts on minerals in coal gangue, particularly the Fe-containing components. XPS analyses show that sulfur speciation in the raw gangue samples was associated with sulfate, dibenzothiophene and pyrite sulfur. After continuous leaching by the mixed culture, the total sulfur, pyrite sulfur and sulfate sulfur in coal gangue decreased from 2.06% to 1.18%, 0.66% to 0.14% and 1.02% to 0.52%. The desulfurization rates of the pyrite and sulfate were 78.79% and 49.02 %. It is concluded that the mixed culture of these two microorganisms could effectively leach metals from coal gangue coupling with the oxidation of sulfide to sulfate. This study has provided fundamental information as a potential application in the recovery of valuable metals from coal gangue or environmental remediation related to gangue in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
D. Barrie Johnson ◽  
Sarah L. Smith ◽  
Ana Laura Santos

Using acidophilic bacteria to catalyze the reductive dissolution of oxidized minerals is an innovative process that facilitates the extraction of valuable base metals (principally cobalt and nickel) from limonites, which are otherwise often regarded as waste products of laterite mining. The most appropriate conditions required to optimize reductive mineral dissolution are unresolved, and the current work has reassessed the roles of Acidithiobacillus spp. in this process and identified novel facets. Aerobic bio-oxidation of zero-valent sulfur (ZVS) can generate sufficient acidity to counterbalance that consumed by the dissolution of oxidized iron and manganese minerals but precludes the development of low redox potentials that accelerate the reductive process, and although anaerobic oxidation of sulfur by iron-reducing species can achieve this, less acid is generated. Limited reduction of soluble iron (III) occurs in pure cultures of Acidithiobacillus spp. (Acidithiobacillus thiooxidans and Acidithiobacillus caldus) that do not grow by iron respiration. This phenomenon (“latent iron reduction”) was observed in aerated cultures and bioreactors and was independent of electron donor used (ZVS or hydrogen). Sufficient ferrous iron was generated in the presence of sterilized hydrophilic sulfur (bio-ZVS) to promote the effective reductive dissolution of Mn (IV) minerals in limonite and the solubilization of cobalt in the absence of viable acidophiles.


Author(s):  
Surendra K. Pradhan ◽  
Helvi Heinonen-Tanski ◽  
Anna-Maria Veijalainen ◽  
Sirpa Peräniemi ◽  
Eila Torvinen

Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 °C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, which solubilized and extracted 92% of P. We found that acidithiobacilli supplemented with S can be used to treat sludge, i.e., achieve hygienization, removal of heavy metals, and solubilization and recovery of P.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Zahra Khadem Modarresi ◽  
Fereshteh Bakhtiari ◽  
Mohammadmehdi Azizi

The microbial corrosion of reinforced concrete sewers was inhibited by synthesized cuprous oxide (Cu2O) nanoparticles. The antibacterial characteristics of Cu2O on Acidithiobacillus thiooxidans were investigated by temporal variation of pH, turbidity, and bacterial counting. Three reinforced concrete samples with different weight percentages of electrodeposited Cu2O (0.06 wt%, 0.055 wt %, 0.05 wt %) were used. The bacterial counting showed that the number of bacteria in samples with 0.06, 0.055, and 0.05 wt% of Cu2O was 4.82, 4.42, and 2.94 times lower than the blank sample (BS), respectively. After bacterial growth, the optical density measurement showed that the percentage of turbidity enhancement for samples with 0.06, 0.055, and 0.05 wt% of Cu2O were 108%, 118%, 165%, respectively, while it was 412% for the BS. Moreover, the pilot stage's pH monitoring revealed that the electrodeposited Cu2O lowered the concentration of hydronium between 7 to 81 times compared to the BS. Experiments indicated that slight changes in the amount of electrodeposited Cu2O lead to significant changes in samples' ability to hinder bacterial growth and microbial-induced corrosion.    


Sign in / Sign up

Export Citation Format

Share Document