magnetic hyperthermia
Recently Published Documents


TOTAL DOCUMENTS

891
(FIVE YEARS 407)

H-INDEX

64
(FIVE YEARS 17)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 544
Author(s):  
Oscar Cervantes ◽  
Zaira del Rocio Lopez ◽  
Norberto Casillas ◽  
Peter Knauth ◽  
Nayeli Checa ◽  
...  

A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 262
Author(s):  
Venkatesha Narayanaswamy ◽  
Imaddin A. Al-Omari ◽  
Aleksandr S. Kamzin ◽  
Bashar Issa ◽  
Ihab M. Obaidat

Magnetically hard–soft core-shell ferrite nanoparticles are synthesized using an organometallic decomposition method through seed-mediated growth. Two sets of core-shell nanoparticles (S1 and S2) with different shell (Fe3O4) thicknesses and similar core (CoFe2O4) sizes are obtained by varying the initial quantities of seed nanoparticles of size 6.0 ± 1.0 nm. The nanoparticles synthesized have average sizes of 9.5 ± 1.1 (S1) and 12.2 ± 1.7 (S2) nm with corresponding shell thicknesses of 3.5 and 6.1 nm. Magnetic properties are investigated under field-cooled and zero-field-cooled conditions at several temperatures and field cooling values. Magnetic heating efficiency for magnetic hyperthermia applications is investigated by measuring the specific absorption rate (SAR) in alternating magnetic fields at several field strengths and frequencies. The exchange bias is found to have a nonmonotonic and oscillatory relationship with temperature at all fields. SAR values of both core-shell samples are found to be considerably larger than that of the single-phase bare core particles. The effective anisotropy and SAR values are found to be larger in S2 than those in S1. However, the saturation magnetization displays the opposite behavior. These results are attributed to the occurrence of spin-glass regions at the core-shell interface of different amounts in the two samples. The novel outcome is that the interfacial exchange anisotropy of core-shell nanoparticles can be tailored to produce large effective magnetic anisotropy and thus large SAR values.


Author(s):  
Angel T. Apostolov ◽  
Iliana N. Apostolova ◽  
Julia M. Wesselinowa

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 205
Author(s):  
María Salvador ◽  
José Luis Marqués-Fernández ◽  
José Carlos Martínez-García ◽  
Dino Fiorani ◽  
Paolo Arosio ◽  
...  

Today, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators of heating in magnetic hyperthermia. One of the critical characteristics of nanoparticles to adjust to the biomedical needs of each application is their polymeric coating. Fatty acid coatings are known to contribute to colloidal stability and good surface crystalline quality. While monolayer coatings make the particles hydrophobic, a fatty acid double-layer renders them hydrophilic, and therefore suitable for use in body fluids. In addition, they provide the particles with functional chemical groups that allow their bioconjugation. This work analyzes three types of self-assembled bilayer fatty acid coatings of superparamagnetic iron oxide nanoparticles: oleic, lauric, and myristic acids. We characterize the particles magnetically and structurally and study their potential for resonance imaging, magnetic hyperthermia, and labeling for biosensing in lateral flow immunoassays. We found that the myristic acid sample reported a large r2 relaxivity, superior to existing iron-based commercial agents. For magnetic hyperthermia, a significant specific absorption rate value was obtained for the oleic sample. Finally, the lauric acid sample showed promising results for nanolabeling.


2022 ◽  
Vol Volume 17 ◽  
pp. 31-44
Author(s):  
Chiseon Ryu ◽  
Hwangjae Lee ◽  
Hohyeon Kim ◽  
Seong Hwang ◽  
Yaser Hadadian ◽  
...  

Author(s):  
Roger Borges ◽  
Letície M. Ferreira ◽  
Carlos Rettori ◽  
Isabela M. Lourenço ◽  
Amedea B. Seabra ◽  
...  

ACS Nano ◽  
2021 ◽  
Author(s):  
Enzo Bertuit ◽  
Emilia Benassai ◽  
Guillaume Mériguet ◽  
Jean-Marc Greneche ◽  
Benoit Baptiste ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document