microalloyed steels
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 55)

H-INDEX

47
(FIVE YEARS 2)

2022 ◽  
Vol 25 ◽  
Author(s):  
Jaqueline Polezi Mazini ◽  
André Itman Filho ◽  
Breno Mendes Rabelo Ávila ◽  
Rosana Vilarim da Silva ◽  
Pedro Gabriel Bonella de Oliveira

Author(s):  
Jun Xing ◽  
Hanlin Ding ◽  
Guohui Zhu ◽  
Fan Li ◽  
Junliang Li

Abstract The critical strain for dynamic recrystallization (DRX) is most important in designing rolling schedules for the refinement of grain size by boundary-induced transformation mechanisms. Modeling of the critical strain for DRX from the stress-strain curves obtained from hot compression was physically built in this paper. The stress-strain behaviour of materials during hot deformation should be a combination of work-hardening and recrystallization softening. Before DRX occurred, the stress-strain behaviours could be described by a constitutive equation in which basic strain hardening and the effect of strain rate and temperature on stress-strain behaviour are included. Once DRX was promoted, obvious deviation between the experimental and calculated stress-strain curves appeared, which denoted the critical strain for DRX. The modeling in this work could be used not only to accurately calculate the critical strain for DRX but also to analyze the dynamic softening behaviours during hot deformation. To validate the calculated results, the stress-strain database was analyzed in the H beam sample deformed at 1000C with a strain rate of 0.1/s, and a critical strain of 0.22 was obtained by this novel method as an example. The calculated result is in good agreement with the experimental data obtained by micrographical observations.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Siying Song ◽  
Junyu Tian ◽  
Juan Xiao ◽  
Lei Fan ◽  
Yuebiao Yang ◽  
...  

Hot tensile tests were conducted in this study to investigate the effect of strain rate (10−3 and 10 s−1) and vanadium content (0.029 and 0.047 wt.%) on the hot ductility of low-carbon microalloyed steels. The results indicate that a hot ductility trough appears at a low strain rate (10−3 s−1) because of the sufficient time for ferrite transformation and the growth of second particles, but it disappears at a high strain rate (10 s−1). The hot ductility is improved with the increase in strain rate at 700 °C or higher temperatures. In addition, with the increase in vanadium content, the large amounts of precipitate and increased ferrite transformation result in poor hot ductility of steels fractured at a low temperature range (600~900 °C). However, when the steel is fractured at a high temperature range (1000~1200 °C), more vanadium in the solid solution in the austenite inhibits the growth of parental austenite grains and results in grain refinement strengthening, slightly improving the hot ductility.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7752
Author(s):  
Xiongfei Yang ◽  
Hao Yu ◽  
Chenghao Song ◽  
Lili Li

Transformation Induced Plasticity (TRIP)-assisted annealed martensitic (TAM) steel sheets with various microalloying additions such as niobium, vanadium, or titanium were prepared on laboratory scale and subjected to a double-quenching and austempering heat treatment cycle. Slow strain rate tensile (SSRT) was tested on the investigated TAM steels with and without hydrogen charging to reveal their tensile behaviors and hydrogen induced embrittlement effects. Microstructure observations by scanning electron microscope (SEM) are composed of a principal annealed martensitic matrix and 11.0–13.0% volume fraction of retained austenite, depending on the type of microalloying addition in the different steels. SSRT results show that these TRIP-assisted annealed martensitic steels under air media conditions combine high tensile strength (>1000 MPa) and good ductility (~25%), while under hydrogen charging condition, both tensile strength and ductility decrease where tensile strength ranges between 680 and 760 MPa, down from 1000–1100 MPa, and ductility loss ratio is between 78.8% and 91.1%, along with a total elongation of less than 5%. Hydrogen charged into steel matrix leads to the appearance of cleavage fractures, implying the occurrence of hydrogen induced embrittlement effect in TAM steels. Thermal hydrogen desorption results show that there are double-peak hydrogen desorption temperature ranges for these microalloyed steels, where the first peak corresponds to a high-density dislocation trapping effect, and the second peak corresponds to a hydrogen trapping effect exerted by microalloying precipitates. Thermal desorption analysis (TDS) in combination with SSRT results demonstrate that microalloying precipitates act as irreversible traps to fix hydrogen and, thus, retard diffusive hydrogen motion towards defects, such as grain boundaries and dislocations in microstructure matrix, and eventually reduce the hydrogen induced embrittlement tendency.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6062
Author(s):  
Remigiusz Błoniarz ◽  
Janusz Majta ◽  
Bogdan Rutkowski ◽  
Grzegorz Korpała ◽  
Ulrich Prahl ◽  
...  

The effects of thermomechanical processing (TMP) on the mechanical response of microalloyed steels subjected to dynamic loading conditions were examined. The deformation conditions in the thermomechanical laboratory rolling processes were selected on the basis of dilatometric tests. It allowed (with a constant value of total deformation) us to obtain microstructures with different compositions and morphology of the particular components. Several samples characterized by a particularly complex and unexpected representation of the obtained microstructures were selected for further research. Plastometric tests, i.e., compression and tensile tests, were performed under quasi-static loading with digital image correlation (DIC) analysis, and under dynamic loading on the Split Hopkinson Pressure Bar (SHPB) apparatus with strain rates of 1400 and 2000 s−1. Samples deformed in such conditions were subjected to microstructural analysis and hardness measurements. It has been observed that the use of various combinations of TMP parameters can result in the formation of specific microstructures, which in turn are the source of an attractive mechanical response under dynamic loading conditions. This opens up new possible areas of application for such popular structural materials which are microalloyed steels.


Author(s):  
Han Yan ◽  
Di Zhao ◽  
Tongfu Qi ◽  
Xuesong Leng ◽  
Kuijun Fu

AbstractThe microstructure evolution and impact toughness of the coarse grain heat-affected zone (CGHAZ) of TiNbV microalloyed steels were investigated by using a thermal simulation test. The samples were treated with various simulated welding thermal cycles. The phase constituents and grain sizes were analyzed by using electron backscatter diffraction analysis. The microstructure of the CGHAZ of the treated samples consisted of ferrite, acicular ferrite, pearlite, and bainite. The samples have a higher impact toughness under a lower welding heat input. This is because the microstructure of the CGHAZ is dominated by the higher volume fraction of the high-angle grain boundaries of acicular ferrites. The presence of bainite and coarsening grains are two key factors deteriorating the toughness of the CGHAZ of TiNbV microalloyed steels. The volume fraction of bainite sharply increased as the welding heat input increased, leading to a decrease in the impact toughness of the CGHAZ. For a higher welding heat input, both the severe coarsening of the grain size and a higher bainite content would result in poor impact toughness.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1584
Author(s):  
Alexander Zaitsev ◽  
Nataliya Arutyunyan

Low-carbon Ti-Mo microalloyed steels represent a new generation of high strength steels for automobile sheet. Excellent indicators of difficult-to-combine technological, strength, and other service properties are achieved due to the superposition of a dispersed ferrite matrix and a bulk system of nanoscale carbide precipitates. Recently, developments are underway to optimize thermo-deformation processing for the most efficient use of phase precipitates. The review summarizes and analyzes the results of studies of mechanical properties depending on the chemical composition and parameters of hot deformation of low-carbon Ti-Mo microalloyed steels. Particular attention is paid to the features of the formation and the influence of various types of phase precipitates and the dispersion of the microstructure on mechanical properties. The advantages of Ti-Mo microalloying system and the tasks requiring further solution are shown.


2021 ◽  
Vol 100 (10) ◽  
pp. 338-347
Author(s):  
ALEJANDRO HINTZE CESARO ◽  
◽  
PATRICIO F. MENDEZ

The extent of the heat-affected zone (HAZ) in welding is typically estimated from thermodynamic considerations of austenization; however, thermodynamics are a poor predictor of the HAZ location in microalloyed steels. This work addresses the problem through the study of austenite formation during continuous heating on a grade X80 pipeline steel with an initial ferritic and bainitic microstructure. The methodology involved dilatometry, electron microscopy, and thermodynamic calculations. A continuous heating transformation diagram was developed for heating rates varying from 1˚ to 500˚C/s. For the slower heating rates, austenite start-transformation temperature was higher than the one dictated by the equilibrium, while for the faster heating rates, start-transformation temperature gradually approached the theoretically calculated temperature at which the ferrite can transform (possibly through a massive transformation) without a long-range diffusion into austenite. Partial-transformation experiments suggested that austenite formation occurs in the following two stages: 1) the transformation of bainitic zones into austenite, and later, 2) the transformation of polygonal ferritic grains.


Sign in / Sign up

Export Citation Format

Share Document