probability of detection
Recently Published Documents


TOTAL DOCUMENTS

1356
(FIVE YEARS 505)

H-INDEX

43
(FIVE YEARS 10)

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106582
Author(s):  
João da Cruz Payão Filho ◽  
Vinicius Pereira Maia ◽  
Elisa Kimus Dias Passos ◽  
Rodrigo Stohler Gonzaga ◽  
Diego Russo Juliano

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 83-90
Author(s):  
PIYUSH JOSHI ◽  
M.S. SHEKHAR ◽  
ASHAVANI KUMAR ◽  
J.K. QUAMARA

Kalpana satellite images in real time available by India meteorological department (IMD), contain relevant inputs about the cloud in infra-red (IR), water vapor (WV), and visible (VIS) bands. In the present study an attempt has been made to forecast precipitation at six stations in western Himalaya by using extracted grey scale values of IR and WV images. The extracted pixel values at a location are trained for the corresponding precipitation at that location. The precipitation state at 0300 UTC is considered to train the model for precipitation forecast with 24 hour lead time. The satellite images acquired in IR (10.5 - 12.5 µm) and WV (5.7 - 7.1 µm) bands have been used for developing Artificial Neural Network (ANN) model for qualitative as well as quantitative precipitation forecast. The model results are validated with ground observations and skill scores are computed to check the potential of the model for operational purpose. The probability of detection at the six stations varies from 0.78 for Gulmarg in Pir-Panjal range to 0.95 for Dras in Greater Himalayan range. Overall performance for qualitative forecast is in the range from 61% to 84%. Root mean square error for different locations under study is in the range 5.81 to 8.7.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 662
Author(s):  
Tala Talaei Khoei ◽  
Shereen Ismail ◽  
Naima Kaabouch

Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning System spoofing. Several techniques have been proposed for detecting such attacks. However, the recurrence and frequent Global Positioning System spoofing incidents show a need for effective security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic selector, which identify the most effective classifier for the detection of such attacks. We develop a one-stage ensemble feature selection method to identify and discard the correlated and low importance features from the dataset. We implement the proposed techniques using ten machine-learning models and compare their performance in terms of four evaluation metrics: accuracy, probability of detection, probability of false alarm, probability of misdetection, and processing time. The proposed techniques dynamically choose the classifier with the best results for detecting attacks. The results indicate that the proposed dynamic techniques outperform the existing ensemble models with an accuracy of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection of 1.09%, and a processing time of 1.24 s.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sridhar Gummadi ◽  
Tufa Dinku ◽  
Paresh B. Shirsath ◽  
M. D. M. Kadiyala

AbstractHigh-resolution reliable rainfall datasets are vital for agricultural, hydrological, and weather-related applications. The accuracy of satellite estimates has a significant effect on simulation models in particular crop simulation models, which are highly sensitive to rainfall amounts, distribution, and intensity. In this study, we evaluated five widely used operational satellite rainfall estimates: CHIRP, CHIRPS, CPC, CMORPH, and GSMaP. These products are evaluated by comparing with the latest improved Vietnam-gridded rainfall data to determine their suitability for use in impact assessment models. CHIRP/S products are significantly better than CMORPH, CPC, and GsMAP with higher skill, low bias, showing a high correlation coefficient with observed data, and low mean absolute error and root mean square error. The rainfall detection ability of these products shows that CHIRP outperforms the other products with a high probability of detection (POD) scores. The performance of the different rainfall datasets in simulating maize yields across Vietnam shows that VnGP and CHIRP/S were capable of producing good estimates of average maize yields with RMSE ranging from 536 kg/ha (VnGP), 715 kg/ha (CHIRPS), 737 kg/ha (CHIRP), 759 kg/ha (GsMAP), 878 kg/ha (CMORPH) to 949 kg/ha (CPC). We illustrated that there is a potential for use of satellite rainfall estimates to overcome the issues of data scarcity in regions with sparse rain gauges.


2022 ◽  
Vol 12 (2) ◽  
pp. 641
Author(s):  
Junsung Choi ◽  
Dongryul Park ◽  
Suil Kim ◽  
Seungyoung Ahn

Along with the development of electromagnetic weapons, Electronic Warfare (EW) has been rising as the future form of war. Especially in the area of wireless communications, high security defense systems such as Low Probability of Detection (LPD), Low Probability of Interception (LPI), and Low Probability of Exploitation (LPE) communication algorithms are being studied to prevent military force loss. One LPD, LPI, and LPE communication algorithm, physical-layer security, has been discussed and studied. We propose a noise signaling system, a type of physical-layer security, which modifies conventionally modulated I/Q data into a noise-like shape. To suggest the possibility of realistic implementation, we use Software-Defined Radio (SDR). Since there are certain hardware limitations, we present the limitations, requirements, and preferences of practical implementation of the noise signaling system. The proposed system uses ring-shaped signaling, and we present a ring-shaped signaling system algorithm, SDR implementation methodology, and performance evaluations of the system using the metrics of Bit Error Rate (BER) and Probability of Modulation Identification (PMI), which we obtain by using a Convolutional Neural Network (CNN) algorithm. We conclude that the ring-shaped signaling system can perform high LPI/LPE communication functioning because an eavesdropper cannot obtain the correct modulation scheme information. However, the performance can vary with the configurations of the I/Q data-modifying factors.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Marlon Núñez

The prediction of solar energetic particle (SEP) events may help to improve the mitigation of adverse effects on humans and technology in space. UMASEP (University of Málaga Solar particle Event Predictor) is an empirical model scheme that predicts SEP events. This scheme is based on a dual-model approach. The first model predicts well-connected events by using an improved lag-correlation algorithm for analyzing soft X-ray (SXR) and differential proton fluxes to estimate empirically the Sun–Earth magnetic connectivity. The second model predicts poorly connected events by analyzing the evolution of differential proton fluxes. This study presents the evaluation of UMASEP-10 version 2, a tool based on the aforementioned scheme for predicting all >10 MeV SEP events, including those without associated flare. The evaluation of this tool is presented in terms of the probability of detection (POD), false alarm ratio (FAR) and average warning time (AWT). The best performance was achieved for the solar cycle 24 (i.e., 2008–2019), obtaining a POD of 91.1% (41/45), a FAR of 12.8% (6/47) and an AWT of 2 h 46 min. These results show that UMASEP-10 version 2 obtains a high POD and low FAR mainly because it is able to detect true Sun–Earth magnetic connections.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 147
Author(s):  
Muhammad Naveed Anjum ◽  
Muhammad Irfan ◽  
Muhammad Waseem ◽  
Megersa Kebede Leta ◽  
Usama Muhammad Niazi ◽  
...  

This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in daily, monthly, seasonal, and annual rainfall estimates of SRPs at pixel and regional scales during 2010–2018 were examined. Several evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias), as well as categorical indices (Probability of Detection (POD), Critical Success Index (CSI), and False Alarm Ration (FAR)) were used to assess the performance of the SRPs. The following findings were found: (1) CHIRPS-2.0 and SM2RAIN-ASCAT products were capable of tracking the spatiotemporal variability of observed rainfall, (2) all SRPs had higher overall performances in the northwestern parts of the province than the other parts, (3) all SRP estimates were in better agreement with ground-based monthly observations than daily records, and (4) on the seasonal scale, CHIRPS-2.0 and SM2RAIN-ASCAT were better than PERSIANN-CCS and PERSIANN. In all seasons, CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PERSIANN-CCS and PERSIANN-CDR. Based on our findings, we recommend that hydrometeorological investigations in Pakistan’s Punjab Province employ monthly estimates of CHIRPS-2.0 and SM2RAIN-ASCAT products.


2022 ◽  
Vol 22 (1) ◽  
pp. 23-40
Author(s):  
Chung-Chieh Wang ◽  
Pi-Yu Chuang ◽  
Chih-Sheng Chang ◽  
Kazuhisa Tsuboki ◽  
Shin-Yi Huang ◽  
...  

Abstract. In this study, the performance of quantitative precipitation forecasts (QPFs) by the Cloud-Resolving Storm Simulator (CReSS) in Taiwan, at a horizontal grid spacing of 2.5 km and a domain size of 1500×1200 km2, in the range of 1–3 d during three Mei-yu seasons (May–June) of 2012–2014 is evaluated using categorical statistics, with an emphasis on heavy-rainfall events (≥100 mm per 24 h). The categorical statistics are chosen because the main hazards are landslides and floods in Taiwan, so predicting heavy rainfall at the correct location is important. The overall threat scores (TSs) of QPFs for all events on day 1 (0–24 h) are 0.18, 0.15, and 0.09 at thresholds of 100, 250, and 500 mm, respectively, and indicate considerable improvements at increased resolution compared to past results and 5 km models (TS < 0.1 at 100 mm and TS ≤ 0.02 at 250 mm). Moreover, the TSs are shown to be higher and the model more skillful in predicting larger events, in agreement with earlier findings for typhoons. After classification based on observed rainfall, the TSs of day − 1 QPFs for the largest 4 % of events by CReSS at 100, 250, and 500 mm (per 24 h) are 0.34, 0.24, and 0.16, respectively, and can reach 0.15 at 250 mm on day 2 (24–48 h) and 130 mm on day 3 (48–72 h). The larger events also exhibit higher probability of detection and lower false alarm ratio than smaller ones almost without exception across all thresholds. With the convection and terrain better resolved, the strength of the model is found to lie mainly in the topographic rainfall in Taiwan rather than migratory events that are more difficult to predict. Our results highlight the crucial importance of cloud-resolving capability and the size of fine mesh for heavy-rainfall QPFs in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document