drosophila genome
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 30)

H-INDEX

54
(FIVE YEARS 3)

Author(s):  
Ana López-Varea ◽  
Patricia Vega-Cuesta ◽  
Ana Ruiz-Gómez ◽  
Cristina M Ostalé ◽  
Cristina Molnar ◽  
...  

Abstract The Drosophila genome contains approximately 14.000 protein coding genes encoding all the necessary information to sustain cellular physiology, tissue organization, organism development and behavior. In this manuscript we describe in some detail the phenotypes in the adult fly wing generated after knockdown of approximately 80% of Drosophila genes. We combined this phenotypic description with a comprehensive molecular classification of the Drosophila proteins into classes that summarize the main expected or known biochemical/functional aspect of each protein. This information, combined with mRNA expression levels and in situ expression patterns, provides a simplified atlas of the Drosophila genome, from housekeeping proteins to the components of the signaling pathways directing wing development, that might help to further understand the contribution of each gene group to wing formation.


2021 ◽  
Author(s):  
Ramesh Kumar Krishnan ◽  
Naomi Halachmi ◽  
Raju Baskar ◽  
Bakhrat Anna ◽  
Adi Salzberg ◽  
...  

Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different β-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the beta-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the beta-tubulin60D gene, we generated new beta-tubulin60D null alleles (beta-tubulin60D M) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin 1, an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of beta-tubulin60D. We also found a missense mutation in the Pin 1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the β-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that beta-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense beta-tubulin60D mutation in bristle morphogenesis.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 882
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Irmina Bieńkowska ◽  
Piotr Poznanski ◽  
Marzena Łazarczyk ◽  
...  

Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.


Development ◽  
2021 ◽  
Author(s):  
Seoyeon Jang ◽  
Jeon Lee ◽  
Jeremy Mathews ◽  
Holly Ruess ◽  
Anna O. Williford ◽  
...  

Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms including post-translational modification of ribosome proteins (RPs), absence of specific RPs, and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs, RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis, and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical, and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.


2021 ◽  
Vol 11 (11) ◽  
pp. 5038
Author(s):  
Youngho Kim ◽  
Munseong Kang ◽  
Ju-Hui Jeong ◽  
Dae Woong Kang ◽  
Soo Jun Park ◽  
...  

Since the time of the HGP, research into next-generation sequencing, which can reduce the cost and time of sequence analysis using computer algorithms, has been actively conducted. Mapping is a next-generation sequencing method that identifies sequences by aligning short reads with a reference genome for which sequence information is known. Mapping can be applied to tasks such as SNP calling, motif searches, and gene identification. Research on mapping that utilizes BWT and GPU has been undertaken in order to obtain faster mapping. In this paper, we propose a new mapping algorithm with additional consideration for base swaps. The experimental results demonstrate that when the penalty score for swaps was −1, −2, and −3 in paired-end alignment, for the human whole genome, SOAP3-swap aligned 4667, 2318, and 972 more read pairs, respectively, than SOAP3-dp, and for the drosophila genome, SOAP3-swap aligned 1253, 454, and 129 more read pairs, respectively, than SOAP3-dp. SOAP3-swap has the same functionality as that of SOAP3-dp and also improves the alignment ratio by taking biologically significant swaps into account for the first time.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 817
Author(s):  
Samantha C. Peterson ◽  
Kaylah B. Samuelson ◽  
Stacey L. Hanlon

Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.


Author(s):  
Daniel Mariyappa ◽  
Arthur Luhur ◽  
Danielle Overton ◽  
Andrew C Zelhof

Abstract The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.


2021 ◽  
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Irmina Bieńkowska ◽  
Mariusz Sacharczuk ◽  
Michel-Edwar Mickael

Understanding how the evolutionary relationship between immune cells and the blood-brain is important to devise therapeutic strategies that can regulate their critical function. In vertebrates, immune cells follow either a paracellular or transcellular pathway to infiltrate the BBB. In drosophila glial cells form the BBB that regulates the access of immune-like cells to the drosophila brain. However, it is still not known which route immune-like cells follow to infiltrate the drosophila brain. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly drosophila genome lacks both genes. Tre1 superfamily (Tre1, Moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family Interestingly we found that Tre1 exists in mollusks, insects, ambulacria, and sclaidphora. Moody is shown to be a more ancient protein and it existed since cnidaria emergence and has a homolog (GPCR84) in mammals. The third family member (Dmel_CG4313) only exists in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 superfamily that seems to have diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas Moody has evolved during positive selection. The sites that we found under positive selection are Likely to play a role in the speciation of function in the case of Moody. We have identified an SH3, in Tre1 and, moody and Dmel_CG4313. Sh3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner. We suggest that Tre1 could be playing an important role in paracellular diapedesis in drosophila.


Genetics ◽  
2021 ◽  
Author(s):  
Siqian Feng ◽  
Shan Lu ◽  
Wesley B Grueber ◽  
Richard S Mann

Abstract We describe a simple and efficient technique that allows scarless engineering of Drosophila genomic sequences near any landing site containing an inverted attP cassette, such as a MiMIC insertion. This two-step method combines phiC31 integrase-mediated site-specific integration and homing nuclease-mediated resolution of local duplications, efficiently converting the original landing site allele to modified alleles that only have the desired change(s). Dominant markers incorporated into this method allow correct individual flies to be efficiently identified at each step. In principle, single attP sites and FRT sites are also valid landing sites. Given the large and increasing number of landing site lines available in the fly community, this method provides an easy and fast way to efficiently edit the majority of the Drosophila genome in a scarless manner. This technique should also be applicable to other species.


Sign in / Sign up

Export Citation Format

Share Document