feynman diagrams
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 85)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Einan Gardi ◽  
Mark Harley ◽  
Rebecca Lodin ◽  
Martina Palusa ◽  
Jennifer M. Smillie ◽  
...  

Abstract Webs are sets of Feynman diagrams which manifest soft gluon exponentiation in gauge theory scattering amplitudes: individual webs contribute to the logarithm of the amplitude and their ultraviolet renormalization encodes its infrared structure. In this paper, we consider the particular class of boomerang webs, consisting of multiple gluon exchanges, but where at least one gluon has both of its endpoints on the same Wilson line. First, we use the replica trick to prove that diagrams involving self-energy insertions along the Wilson line do not contribute to the web, i.e. their exponentiated colour factor vanishes. Consequently boomerang webs effectively involve only integrals where boomerang gluons straddle one or more gluons that connect to other Wilson lines. Next we classify and calculate all boomerang webs involving semi-infinite non-lightlike Wilson lines up to three-loop order, including a detailed discussion of how to regulate and renormalize them. Furthermore, we show that they can be written using a basis of specific harmonic polylogarithms, that has been conjectured to be sufficient for expressing all multiple gluon exchange webs. However, boomerang webs differ from other gluon-exchange webs by featuring a lower and non-uniform transcendental weight. We cross-check our results by showing how certain boomerang webs can be determined by the so-called collinear reduction of previously calculated webs. Our results are a necessary ingredient of the soft anomalous dimension for non-lightlike Wilson lines at three loops.


Author(s):  
Eduardo Casali ◽  
Donald M Marolf ◽  
Henry Maxfield ◽  
Mukund Rangamani

Abstract The quantum gravity path integral involves a sum over topologies that invites comparisons to worldsheet string theory and to Feynman diagrams of quantum field theory. However, the latter are naturally associated with the non-abelian algebra of quantum fields, while the former has been argued to define an abelian algebra of superselected observables associated with partition-function-like quantities at an asymptotic boundary. We resolve this apparent tension by pointing out a variety of discrete choices that must be made in constructing a Hilbert space from such path integrals, and arguing that the natural choices for quantum gravity differ from those used to construct QFTs. We focus on one-dimensional models of quantum gravity in order to make direct comparisons with worldline QFT.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Beatrix Mühlmann

Abstract We discuss two-dimensional quantum gravity coupled to conformal matter and fixed area in a semiclassical large and negative matter central charge limit. In this setup the gravity theory — otherwise highly fluctuating — admits a round two-sphere saddle. We discuss the two-sphere partition function up to two-loop order from the path integral perspective. This amounts to studying Feynman diagrams incorporating the fixed area constraint on the round two-sphere. In particular we find that all ultraviolet divergences cancel to this order. We compare our results with the two-sphere partition function obtained from the DOZZ formula.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1221
Author(s):  
Satoshi Iso ◽  
Takato Mori ◽  
Katsuta Sakai

This is a continuation of our previous works on entanglement entropy (EE) in interacting field theories. In previous papers, we have proposed the notion of ZM gauge theory on Feynman diagrams to calculate EE in quantum field theories and shown that EE consists of two particular contributions from propagators and vertices. We have also shown that the purely non-Gaussian contributions from interaction vertices can be interpreted as renormalized correlation functions of composite operators. In this paper, we will first provide a unified matrix form of EE containing both contributions from propagators and (classical) vertices, and then extract further non-Gaussian contributions based on the framework of the Wilsonian renormalization group. It is conjectured that the EE in the infrared is given by a sum of all the vertex contributions in the Wilsonian effective action.


Author(s):  
James P. Edwards ◽  
◽  
C. Moctezuma Mata ◽  
Uwe Müller ◽  
Christian Schubert ◽  
...  

The worldline formalism provides an alternative to Feynman diagrams in the construction of amplitudes and effective actions that shares some of the superior properties of the organization of amplitudes in string theory. In particular, it allows one to write down integral representations combining the contributions of large classes of Feynman diagrams of different topologies. However, calculating these integrals analytically without splitting them into sectors corresponding to individual diagrams poses a formidable mathematical challenge. We summarize the history and state of the art of this problem, including some natural connections to the theory of Bernoulli numbers and polynomials and multiple zeta values.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Johannes Thürigen

AbstractRenormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


Sign in / Sign up

Export Citation Format

Share Document