anchoring strength
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 85
Author(s):  
Rumiko Yamaguchi

Liquid crystal director distributions have been numerically analyzed between asymmetric anchoring surfaces, that is, infinitely strong and very weak anchoring strength interfaces. In a hybrid aligned nematic (HAN) cell and a twisted nematic (TN) cell, HAN and TN orientations turn to a homogeneous orientation when the weak anchoring strength is lower than a critical one. Relationships between the anchoring strength and elastic constants of the liquid crystal were analyzed to be of a quasi-homogeneous orientation. The quasi-homogeneous orientation returned to the original HAN and TN orientations under voltage application. Low-driving electro-optical properties with no threshold voltage can be obtained in a quasi-homogeneous HAN cell. A unique voltage–transmission curve of 0–100–0% appeared in a quasi-homogeneous TN cell between the crossed polarizers.


Author(s):  
Setia Budi Sumandra ◽  
Bhisma Mahendra ◽  
Fahrudin Nugroho ◽  
Yusril Yusuf

Carbon nanotubes (CNTs) have benefits in various fields, they are disadvantageous due to their tendency to form aggregates and poorly controlled alignment of the CNT molecules (characterized by order parameters). These deficiencies can be overcome by dispersing the CNTs in nematic liquid crystal (LC) and placing the mixture under the influence of an electric field. In this study, Doi and Landau–de Gennes free energy density equations are used to analytically confirm that an electric field increases the order parameters of CNTs and LCs in a dispersion mixture. The anchoring strength of the nematic LC is also found to affect the order parameters of the CNTs and LC. Further, increasing the length-to-diameter ratio of the CNTs increases their alignment without affecting the LC alignment. These findings indicate that CNT molecular alignment can be controlled by adjusting the CNT length-to-diameter ratio, anchoring the LCs, and adjusting the electric field strength.


2021 ◽  
Vol 22 ◽  
pp. 100599
Author(s):  
H. Dong ◽  
J. Wang ◽  
H. Ding ◽  
P. Wang ◽  
R. Song ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Li ◽  
Xigui Zheng ◽  
Xiaowei Guo ◽  
Boyang Li ◽  
Cong Wang

The gob-side entry retaining plays an important role in improving working face ventilation, alleviating working face connection, and increasing mining revenue. According to the characteristics of the crossheading roof at the 2103 working face of a mine in Shanxi, a structural mechanics model of the roof was established to derive the theoretical formulae for the ultimate hanging arch length of the layered roof with anchors and the initial support resistance of the entry-side support. The influence factors of the ultimate hanging arch length were evaluated using local sensitivity analysis. Based on the theoretical study, the work proposed the collaborative support technology of the crossheading, collaborative support at the 2103 working face. The results showed that the ultimate hanging arch length was most influenced by the width of the plastic zone, followed by the width of the roadway, supporting strength, anchoring strength, layered thickness, and mining depth, while the ultimate tensile strength had little influence. The initial support resistance of the entry-side supports was closely related to the ultimate hanging arch length and the process of gob-side entry retaining. The improved entry-retaining supporting process could control the sharp surface convergence of the surrounding rocks of the entry retaining, the sinkage of the roof of the entry-retaining section was controlled below 100 mm, and that of the advanced section was controlled below 50 mm. The stability of the supports next to the entry is improved, and the needs of the site project are met.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Kai Yan ◽  
Yansong Hu ◽  
Kaozhong Zhao ◽  
Xin Lin

The building finish layer is a comprehensive structural system including the building exterior insulation system and building exterior finish. Combining with buildings has the advantage of reducing wall heat loss and building deformation caused by large temperature differences. Since the building finish layer is prone to cracking, hollowing, and peeling, during the application process, its safety needs to be studied and certified. This study prepares 20 groups of specimens, 15 anchor bolts in each group. The anchor bolt pull-out strength test is carried out. Anchoring damage evolution law and failure mode of anchor bolts are investigated. And the influence of anchoring methods on the pull-out bearing capacity is analyzed. In addition, ABAQUS finite element data simulation is carried out. The stress state of finish in thermomechanical coupling condition and without the effect of temperature are compared and analyzed. The influence factors of anchor bolt pull-out strength and the influence of temperature load on the long-term performance of building finish layer are obtained. The durability of the building finish layer is analyzed. The results show that the anchoring strength of the anchor bolt is positively correlated with the anchoring depth. The anchoring strength is influenced significantly by anchoring construction sequence and temperature. The stress under the coupled effect of temperature and load is greater than that of the single effect of load, and the stress distribution changes significantly. Due to thermal expansion and contraction, the anchor bolt would loosen, which is more prone to damage the building finish layer in a low temperature environment. The weight relationship of each influencing factor of the building finish layer is proposed. A systematic evaluation index system is established. The results of this study provide a basis for subsequent related research work and engineering applications.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 271
Author(s):  
Hassanein Shaban ◽  
Mon-Juan Lee ◽  
Wei Lee

Compared with thermotropic liquid crystals (LCs), the biosensing potential of lyotropic chromonic liquid crystals (LCLCs), which are more biocompatible because of their hydrophilic nature, has scarcely been investigated. In this study, the nematic phase, a mesophase shared by both thermotropic LCs and LCLCs, of disodium cromoglycate (DSCG) was employed as the sensing mesogen in the LCLC-based biosensor. The biosensing platform was constructed so that the LCLC was homogeneously aligned by the planar anchoring strength of polyimide, but was disrupted in the presence of proteins such as bovine serum albumin (BSA) or the cancer biomarker CA125 captured by the anti-CA125 antibody, with the level of disturbance (and the optical signal thus produced) predominated by the amount of the analyte. The concentration- and wavelength-dependent optical response was analyzed by transmission spectrometry in the visible light spectrum with parallel or crossed polarizers. The concentration of CA125 can be quantified with spectrometrically derived parameters in a linear calibration curve. The limit of detection for both BSA and CA125 of the LCLC-based biosensor was superior or comparable to that of thermotropic LC-based biosensing techniques. Our results provide, to the best of our knowledge, the first evidence that LCLCs can be applied in spectrometrically quantitative biosensing.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
H. Nilanthi Padmini ◽  
Mojtaba Rajabi ◽  
Sergij V. Shiyanovskii ◽  
Oleg D. Lavrentovich

Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shunjie Huang ◽  
Xiangrui Meng ◽  
Guangming Zhao ◽  
Yingming Li ◽  
Xiang Cheng ◽  
...  

It is difficult to support roadway with anchor cable in view of impact tendency in impinging liability roadway; a new material of inorganic and high-performance full-length anchoring material for anchoring cable is developed by adding several modifiers with ultrafine cement as the main material. The purpose is to improve the mechanical properties and durability of cement-based materials, improve the coordination of anchor cable support system, and ensure the stability of surrounding rock of mining roadway. The new full-length anchoring material is developed by optimizing the proportion of different components of the material, and the mechanical properties of the new material were studied. The anchoring force of resin anchoring agent, ordinary Portland cement, blank ultrafine cement, and new full-length anchoring material are tested. Based on SEM microscopic characterization, the fracture types and failure characteristics of resin anchoring agent and full-length anchoring material are researched. The results show that the optimal content of each component of the new inorganic high-performance full-length anchorage material is as follows: the content of component A is 15%, the content of component B is 3%, the content of component C is 0.2%, the content of component D is 1%, and the content of component E is 1%; the tensile test shows that the full-length anchoring material has good bonding property, high anchoring strength, strong stability, and good rock coupling. SEM microstructure and morphology analysis have showed that the new anchorage materials can fully hydrate each other, resulting in a relatively dense stone body. The new full-length anchoring material can effectively improve the anchoring force and improve the stability of the anchor cable and has significant performance advantages and good engineering applicability, and it has the advantages of lower cost and safer to use. The new material is a very good supporting material for roadway.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiaguang Kan ◽  
Yuantian Sun ◽  
Yifan Wang ◽  
Sen Yang ◽  
Peng Wang

The function of a resin anchoring agent is to bond the rock of a borehole wall with the body of the anchor so the anchor can play an effective supporting role. The anchoring effect is related to the performance of the resin anchoring agent used and to the stirring rate applied during the anchor installation process. In this report, the stirring rate of the resin anchoring agent is evaluated and discussed in terms of how it affects pore structure and anchoring strength. When the stirring rate is in the range of 400–950 r/min, the uniaxial compressive strength of the resin anchoring agent increases proportionally with the stirring rate, and the compressive strength corresponding to the maximum stirring rate is 15.1% greater than that corresponding to the minimum stirring rate. Conversely, the pore size of the foam inside the resin anchoring agent is inversely proportional to the stirring rate, and the pore size corresponding to the maximum stirring rate is 15.1% smaller than that corresponding to the minimum stirring rate. The anchoring strength increases proportionally with the stirring rate when the stirring rate is between 400 and 800 r/min. Specifically, the anchoring strength associated with the maximum stirring rate is 9.2% greater than the anchoring strength corresponding to the minimum stirring rate. As the stirring time increases from 20 to 60 s, the anchoring force first increases and then decreases, with the optimal stirring time determined to be about 50 s. The results presented herein can be applied to improve anchor installation technology and the anchoring strength of resin anchoring agents.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hai Chi ◽  
Mykhailo Potomkin ◽  
Lei Zhang ◽  
Leonid Berlyand ◽  
Igor S. Aranson

Abstract Microscopic swimmers, both living and synthetic, often dwell in anisotropic viscoelastic environments. The most representative realization of such an environment is water-soluble liquid crystals. Here, we study how the local orientation order of liquid crystal affects the motion of a prototypical elliptical microswimmer. In the framework of well-validated Beris-Edwards model, we show that the microswimmer’s shape and its surface anchoring strength affect the swimming direction and can lead to reorientation transition. Furthermore, there exists a critical surface anchoring strength for non-spherical bacteria-like microswimmers, such that swimming occurs perpendicular in a sub-critical case and parallel in super-critical case. Finally, we demonstrate that for large propulsion speeds active microswimmers generate topological defects in the bulk of the liquid crystal. We show that the location of these defects elucidates how a microswimmer chooses its swimming direction. Our results can guide experimental works on control of bacteria transport in complex anisotropic environments.


Sign in / Sign up

Export Citation Format

Share Document