measures of maximal entropy
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
pp. 1-30
Author(s):  
RONNIE PAVLOV

Abstract In this work, we treat subshifts, defined in terms of an alphabet $\mathcal {A}$ and (usually infinite) forbidden list $\mathcal {F}$ , where the number of n-letter words in $\mathcal {F}$ has ‘slow growth rate’ in n. We show that such subshifts are well behaved in several ways; for instance, they are boundedly supermultiplicative in the sense of Baker and Ghenciu [Dynamical properties of S-gap shifts and other shift spaces. J. Math. Anal. Appl.430(2) (2015), 633–647] and they have unique measures of maximal entropy with the K-property and which satisfy Gibbs bounds on large (measure-theoretically) sets. The main tool in our proofs is a more general result, which states that bounded supermultiplicativity and a sort of measure-theoretic specification property together imply uniqueness of the measure of maximum entropy and our Gibbs bounds. We also show that some well-known classes of subshifts can be treated by our results, including the symbolic codings of $x \mapsto \alpha + \beta x$ (the so-called $\alpha $ - $\beta $ shifts of Hofbauer [Maximal measures for simple piecewise monotonic transformations. Z. Wahrsch. verw. Geb.52(3) (1980), 289–300]) and the bounded density subshifts of Stanley [Bounded density shifts. Ergod. Th. & Dynam. Sys.33(6) (2013), 1891–1928].


2019 ◽  
Vol 100 (3) ◽  
pp. 1013-1033
Author(s):  
Felipe García‐Ramos ◽  
Ronnie Pavlov

2019 ◽  
Vol 294 (1-2) ◽  
pp. 769-781 ◽  
Author(s):  
Tamara Kucherenko ◽  
Daniel J. Thompson

2016 ◽  
Vol 18 (05) ◽  
pp. 1550083 ◽  
Author(s):  
Tamara Kucherenko ◽  
Christian Wolf

Given a continuous dynamical system [Formula: see text] on a compact metric space [Formula: see text] and a continuous potential [Formula: see text], the generalized rotation set is the subset of [Formula: see text] consisting of all integrals of [Formula: see text] with respect to all invariant probability measures. The localized entropy at a point in the rotation set is defined as the supremum of the measure-theoretic entropies over all invariant measures whose integrals produce that point. In this paper, we provide an introduction to the theory of rotation sets and localized entropies. Moreover, we consider a shift map and construct a Lipschitz continuous potential, for which we are able to explicitly compute the geometric shape of the rotation set and its boundary measures. We show that at a particular exposed point on the boundary there are exactly two ergodic localized measures of maximal entropy.


2014 ◽  
Vol 2 ◽  
Author(s):  
LAURA DE MARCO ◽  
XANDER FABER

AbstractWe show that the weak limit of the maximal measures for any degenerating sequence of rational maps on the Riemann sphere ${\hat{{\mathbb{C}}}} $ must be a countable sum of atoms. For a one-parameter family $f_t$ of rational maps, we refine this result by showing that the measures of maximal entropy have a unique limit on $\hat{{\mathbb{C}}}$ as the family degenerates. The family $f_t$ may be viewed as a single rational function on the Berkovich projective line $\mathbf{P}^1_{\mathbb{L}}$ over the completion of the field of formal Puiseux series in $t$, and the limiting measure on $\hat{{\mathbb{C}}}$ is the ‘residual measure’ associated with the equilibrium measure on $\mathbf{P}^1_{\mathbb{L}}$. For the proof, we introduce a new technique for quantizing measures on the Berkovich projective line and demonstrate the uniqueness of solutions to a quantized version of the pullback formula for the equilibrium measure on $\mathbf{P}^1_{\mathbb{L}}$.


Sign in / Sign up

Export Citation Format

Share Document