valence band edge
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2 (3) ◽  
pp. 274-283
Author(s):  
Masaya Ichimura

The band alignment of Mg(OH)2-based heterostructures is investigated based on first-principles calculation. (111)-MgO/(0001)-Mg(OH)2 and (0001)-wurtzite ZnO/(0001)-Mg(OH)2 heterostructures are considered. The O 2s level energy is obtained for each O atom in the heterostructure supercell, and the band edge energies are evaluated following the procedure of the core-level spectroscopy. The calculation is based on the generalized gradient approximation with the on-site Coulomb interaction parameter U considered for Zn. For MgO/Mg(OH)2, the band alignment is of type II, and the valence band edge of MgO is higher by 1.6 eV than that of Mg(OH)2. For ZnO/Mg(OH)2, the band alignment is of type I, and the valence band edge of ZnO is higher by 0.5 eV than that of Mg(OH)2. Assuming the transitivity rule, it is expected that Mg(OH)2 can be used for certain types of heterostructure solar cells and dye-sensitized solar cells to improve the performance.


2021 ◽  
Vol 586 ◽  
pp. 39-46
Author(s):  
Vanasundaram Natarajan ◽  
P. Naveen Kumar ◽  
Muneer Ahmad ◽  
Jitender Paul Sharma ◽  
Anil Kumar Chaudhary ◽  
...  

2021 ◽  
Author(s):  
Giorgia Olivieri ◽  
Gregor Kladnik ◽  
Dean Cvetko ◽  
Matthew A. Brown

The electronic structure of hydrated nanoparticles can be unveiled by coupling a liquid microjet with a resonant photoemission spectroscopy.


Author(s):  
Xianghong Niu ◽  
Dazhong Sun ◽  
Li Shi ◽  
Xiaowan Bai ◽  
Qiang Li ◽  
...  

For photocatalytic N2 fixation, electrons at the valence-band edge of the photocatalyst can be directly excited to π* orbitals, which not only significantly activates N2, but also effectively improves the selectivity.


2020 ◽  
Vol 275 ◽  
pp. 128151
Author(s):  
Melinda Vajda ◽  
Daniel Ursu ◽  
Narcis Duteanu ◽  
Marinela Miclau

Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 603
Author(s):  
Jang ◽  
Lee

In this short commentary, we discuss a fundamental reason why two different semiconductor technologies are needed for complementary thin-film transistor (TFT) operations. It is mainly related to an energy-level matching between the band edge of the semiconductor and the work-function energy of the metal, which is used for the source and drain electrodes. The reference energy level is determined by the energy range of work-functions of typical metals for the source and drain electrodes. With the exception of silicon, both the conduction band edge (EC) and valence band edge (EV) of a single organic or inorganic material are unlikely to match the metal work-function energy whose range is typically from –4 to –6 eV. For example, typical inorganic materials, e.g., Zn–O, have the EC of around –4.5 eV (i.e., electron affinity), so the conduction band edge is within the range of the metal work-function energy, suggesting its suitability for n-channel TFTs. On the other hand, p-type inorganic materials, such as Cu–O, have an EV of around –5.5 eV, so the valence band edge is aligned with metal work-function energy, thus the usage for p-channel TFTs. In the case of p-type and n-type organic materials, their highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) should be aligned with metal work-function energy. For example, p-type organic material, e.g., pentacene, has a HOMO level around –5 eV, which is within the range of the metal work-function energy, implying usage for p-channel TFTs. However, its LUMO level is around –3 eV, not being aligned with the metals’ work-function energy. So it is hard to use pentacene for n-channel TFTs. Along with this, n-type organic materials (e.g., C60) should have HOMO levels within the typical metals’ work-function energy for the usage of n-channel TFT. To support this, we provide a qualitative and comparative study on electronic material properties, such as the electron affinity and band-gap of representative organic and inorganic materials, and the work-function energy of typical metals.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1244 ◽  
Author(s):  
Haizeng Song ◽  
Han Wu ◽  
Yuan Gao ◽  
Ka Wang ◽  
Xin Su ◽  
...  

Tin disulfide (SnS2) has gained a lot of interest in the field of converting solar energy into chemical fuels in light-assisted electrochemical water splitting due to its visible-light band gap and high electronic mobility. However, further decreasing the recombination rate of electron-hole pairs and increasing the density of active states at the valence band edge of the photoelectrodes were a critical problem. Here, we were successful in fabricating the super-thin SnS2 nanostructure by a hydrothermal and solution etching method. The super-thin SnS2 nanostructure as a photo-electrocatalytic material exhibited low overpotential of 0.25 V at the current density of −10 mA·cm−2 and the potential remained basically unchanged after 1000 cycles in an H2SO4 electrolyte solution, which was better than that of the SnS2 nanosheet and SnS/SnS2 heterojunction nanosheet. These results show the potential application of super-thin SnS2 nanostructure in electrochemical/photo-electrocatalytic field.


2019 ◽  
Vol 15 ◽  
pp. 605-613
Author(s):  
Giang Thi Phan ◽  
Duy Van Pham ◽  
Ranjit A. Patil ◽  
Chien-Chih Lai ◽  
Wang-Chi Yeh ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (40) ◽  
pp. 2217-2222
Author(s):  
Renu Choudhary ◽  
Rana Biswas ◽  
Bicai Pan ◽  
Durga Paudyal

AbstractMany novel materials are being actively considered for quantum information science and for realizing high-performance qubit operation at room temperature. It is known that deep defects in wide-band gap semiconductors can have spin states and long coherence times suitable for qubit operation. We theoretically investigate from ab-initio density functional theory (DFT) that the defect states in the hexagonal silicon carbide (4H-SiC) are potential qubit materials. The DFT supercell calculations were performed with the local-orbital and pseudopotential methods including hybrid exchange-correlation functionals. Di-vacancies in SiC supercells yielded defect levels in the gap consisting of closely spaced doublet just above the valence band edge, and higher levels in the band gap. The divacancy with a spin state of 1 is charge neutral. The divacancy is characterized by C-dangling bonds and a Si-dangling bonds. Jahn-teller distortions and formation energies as a function of the Fermi level and single photon interactions with these defect levels will be discussed. In contrast, the anti-site defects where C, Si are interchanged have high formation energies of 5.4 eV and have just a single shallow defect level close to the valence band edge, with no spin. We will compare results including the defect levels from both the electronic structure approaches.


RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11377-11384 ◽  
Author(s):  
Kaili Wei ◽  
Baolai Wang ◽  
Jiamin Hu ◽  
Fuming Chen ◽  
Qing Hao ◽  
...  

It's highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2− (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH− (+2.27 eV).


Sign in / Sign up

Export Citation Format

Share Document