disease models
Recently Published Documents


TOTAL DOCUMENTS

1411
(FIVE YEARS 482)

H-INDEX

81
(FIVE YEARS 14)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hans-Juergen Schulten ◽  
Fatima Al-Adwani ◽  
Haneen A. Bin Saddeq ◽  
Heba Alkhatabi ◽  
Nofe Alganmi ◽  
...  

AbstractMutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are oncogenic drivers to a variable extent in several tumors, including gliomas, acute myeloid leukemia (AML), cholangiocarcinoma, melanoma, and thyroid carcinoma. The pathobiological effects of these mutations vary considerably, impeding the identification of common expression profiles. We performed an expression meta-analysis between IDH-mutant (IDHmut) and IDH-wild-type (IDHwt) conditions in six human and mouse isogenic disease models. The datasets included colon cancer cells, glioma cells, heart tissue, hepatoblasts, and neural stem cells. Among differentially expressed genes (DEGs), serine protease 23 (PRSS23) was upregulated in four datasets, i.e., in human colon carcinoma cells, mouse heart tissue, mouse neural stem cells, and human glioma cells. Carbonic anhydrase 2 (CA2) and prolyl 3-hydroxylase 2 (P3H2) were upregulated in three datasets, and SOX2 overlapping transcript (SOX2-OT) was downregulated in three datasets. The most significantly overrepresented protein class was termed intercellular signal molecules. An additional DEG set contained genes that were both up- and downregulated in different datasets and included oxidases and extracellular matrix structural proteins as the most significantly overrepresented protein classes. In conclusion, this meta-analysis provides a comprehensive overview of the expression effects of IDH mutations shared between different isogenic disease models. The generated dataset includes biomarkers, e.g., PRSS23 that may gain relevance for further research or clinical applications in IDHmut tumors.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Aline Zbinden ◽  
Kirsten Canté-Barrett ◽  
Karin Pike-Overzet ◽  
Frank J. T. Staal

The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Philipp Tauber ◽  
Frederick Sinha ◽  
Raffaela S. Berger ◽  
Wolfram Gronwald ◽  
Katja Dettmer ◽  
...  

Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.


Sign in / Sign up

Export Citation Format

Share Document