seismic sequence
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 124)

H-INDEX

32
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Subrata Chakraborty ◽  
Monica Maria Mihai ◽  
Nacera Maache ◽  
Gabriela Salomia ◽  
Abdulla Al Blooshi ◽  
...  

Abstract In Abu Dhabi, the Mishrif Formation is developed in the eastern and western parts conformably above the Shilaif Formation and forms several commercial discoveries. The present study was carried out to understand the development of the Mishrif Formation over a large area in western onshore Abu Dhabi and to identify possible Mishrif sweet spots as future drilling locations. To achieve this objective, seismic mapping of various reflectors below, above, and within the Mishrif Formation was attempted. From drilled wells all the available wireline data and cores were studied. Detailed seismic sequence stratigraphic analysis was carried out to understand the evolution of the Mishrif Formation and places where the good porosity-permeability development and oil accumulation might have happened. The seismic characters of the Mishrif Formation in dry and successful wells were studied and were calibrated with well data. The Mishrif Formation was deposited during Late Cretaceous Cenomanian time. In the study area it has a gross thickness ranging from 532 to 1,269 ft as derived from the drilled wells; the thickness rapidly decreases eastward toward the shelf edge and approaching the Shilaif basin. The Mishrif was divided into three third-order sequences based on core observations from seven wells and log signatures from 25 wells. The bottom-most sequence Mishrif 1.0 was identified is the thickest unit but was also found dry. The next identified sequence Mishrif 2.0 was also dry. The next and the uppermost sequence identified as Mishrif 3.0 shows a thickness from 123 to 328 ft. All the tested oil-bearing intervals lie within this sequence. This sequence was further subdivided into three fourth-order sequences based on log and core signatures; namely, Mishrif 3.1, 3.2, and 3.3. In six selected seismic lines of 181 Line Km (LKM) cutting across the depositional axis, seismic sequence stratigraphic analysis was carried out. In those sections all the visible seismic reflectors were picked using a stratigraphic interpretation software. Reflector groups were made to identify lowstand systems tract, transgressive systems tract, maximum flooding surface, and highstand systems tract by tying with the observations of log and core at the wells and by seismic signature. Wheeler diagrams were generated in all these six sections to understand the lateral disposition of these events and locales of their development. Based on stratigraphic analysis, a zone with likely grainy porous facies development was identified in Mishrif 3.0. Paleotopography at the top of Mishrif was reconstructed to help delineate areas where sea-level fall generated leaching-related sweet spots. Analysis of measured permeability data identified the presence of local permeability baffles affecting the reservoir quality and hydrocarbon accumulation. This study helped to identify several drilling locations based on a generic understanding of the Mishrif Formation. Such stratigraphic techniques can be successfully applied in similar carbonate reservoirs to identify the prospect areas.


Author(s):  
Romina Sisti ◽  
Marco Di Ludovico ◽  
Antonio Borri ◽  
Andrea Prota

AbstractThe structural response of unreinforced masonry buildings designed for gravity load only or with reference to obsolete seismic provisions is widely studied in the literature in order to define proper strengthening strategies and solution to mitigate the seismic risk. However, the critical analysis of the effectiveness of past used strengthening solution is still lacking. To fill such gap, the present study deals with the evaluation of the seismic performances of buildings in Campi Alto struck by the 2016 central Italy seismic sequence. The behaviour of buildings in Campi Alto is compared with that of buildings in Norcia. A large part of the buildings in these two towns was strengthened between 1980 and 2000 during the reconstruction processes following previous earthquakes which occurred in 1979 and 1997. However, the strengthened buildings in Norcia reported limited damage while a significant and widespread level of damage was detected on several strengthened buildings in the hamlet of Campi Alto. This study focuses on the buildings in Campi Alto with the aim of investigating on the reasons of their unsatisfactory behaviour. Thus, the seismic action experienced by buildings in Norcia and Campi Alto is initially compared and the main vulnerabilities of these buildings are also evaluated. Then, 20 projects of strengthening interventions submitted to the Civil Engineering Department of the Umbria Region between 1984 and 2012 have been herein analysed and discussed in order to focus on the effectiveness of the strengthening solution adopted in the past. The analyses of such projects and of the empirical damage detected after the 2016 seismic sequence is a unique opportunity to derive useful information for future applications.


2021 ◽  
Author(s):  
Uri S ten Brink ◽  
Elizabeth Vanacore ◽  
Eric J. Fielding ◽  
Jason D Chaytor ◽  
Alberto M Lopez-Venegas ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ferdinando Napolitano ◽  
Ortensia Amoroso ◽  
Mario La Rocca ◽  
Anna Gervasi ◽  
Simona Gabrielli ◽  
...  

A tomographic analysis of Mt. Pollino area (Italy) has been performed using earthquakes recorded in the area during an intense seismic sequence that occurred between 2010 and 2014. 870 local earthquakes with magnitude ranging from 1.8 to 5.0 were selected considering the number of recording stations, the signal quality, and the hypocenter distribution. P- and S-wave arrival times were manually picked and used to compute 3D velocity models through tomographic seismic inversion. The resulting 3D distributions of VP and VS are characterized by high resolution in the central part of the investigated area and from surface to about 10 km below sea level. The aim of the work is to obtain high-quality tomographic images to correlate with the main lithological units that characterize the study area. The results will be important to enhance the seismic hazard assessment of this complex tectonic region. These images show the ductile Apennine platform (VP = 5.3 km/s) overlaying the brittle Apulian platform (VP = 6.0 km/s) at depth of around 5 km. The central sector of the area shows a clear fold and thrust interface. Along this structure, most of the seismicity occurred, including the strongest event of the sequence (MW 5.0). High VP (>6.8 km/s) and high VP/VS (>1.9) patterns, intersecting the southern edge of this western seismogenic volume, have been interpreted as water saturated rocks, in agreement with similar geological context in the Apennines. These fluids could have played a role in nucleation and development of the seismic sequence. A recent study revealed the occurrence of clusters of earthquakes with similar waveforms along the same seismogenic volume. The hypocenters of these cluster events have been compared with the events re-located in this work. Jointly, they depict a 10 km × 4 km fault plane, NW-SE oriented, deepening towards SW with a dip angle of 40–45°. Instead, the volume of seismicity responsible for the ML 4.3 earthquake developed as a mainshock-aftershock sequence, occurring entirely within the average-to-low VP/VS Apennine platform. Our results agree with other independent geophysical analyses carried out in this area, and they could significantly improve the actual knowledge of the main lithologic units of this complex tectonic area.


2021 ◽  
Vol 353 (S1) ◽  
pp. 1-25
Author(s):  
Didier Bertil ◽  
Nicolas Mercury ◽  
Cécile Doubre ◽  
Anne Lemoine ◽  
Jérôme Van der Woerd

2021 ◽  
Author(s):  
Hamze Rouhi ◽  
Majid Gholhaki

Abstract The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.


Sign in / Sign up

Export Citation Format

Share Document