dendritic arbor
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 1)

Author(s):  
Michael L. Risner ◽  
Silvia Pasini ◽  
Nolan R. McGrady ◽  
David J. Calkins

AbstractThe BCL-2 (B-cell lymphoma-2) family of proteins contributes to mitochondrial-based apoptosis in models of neurodegeneration, including glaucomatous optic neuropathy (glaucoma), which degrades the retinal ganglion cell (RGC) axonal projection to the visual brain. Glaucoma is commonly associated with increased sensitivity to intraocular pressure (IOP) and involves a proximal program that leads to RGC dendritic pruning and a distal program that underlies axonopathy in the optic projection. While genetic deletion of the Bcl2-associated X protein (Bax-/-) prolongs RGC body survival in models of glaucoma and optic nerve trauma, axonopathy persists, thus raising the question of whether dendrites and the RGC light response are protected. Here, we used an inducible model of glaucoma in Bax-/- mice to determine if Bax contributes to RGC dendritic degeneration. We performed whole-cell recordings and dye filling in RGCs signaling light onset (αON-Sustained) and offset (αOFF-Sustained). We recovered RGC dendritic morphologies by confocal microscopy and analyzed dendritic arbor complexity and size. Additionally, we assessed RGC axon function by measuring anterograde axon transport of cholera toxin subunit B to the superior colliculus and behavioral spatial frequency threshold (i.e., spatial acuity). We found 1 month of IOP elevation did not cause significant RGC death in either WT or Bax-/- retinas. However, IOP elevation reduced dendritic arbor complexity of WT αON-Sustained and αOFF-Sustained RGCs. In the absence of Bax, αON- and αOFF-Sustained RGC dendritic arbors remained intact following IOP elevation. In addition to dendrites, neuroprotection by Bax-/- generalized to αON-and αOFF-Sustained RGC light- and current-evoked responses. Both anterograde axon transport and spatial acuity declined during IOP elevation in WT and Bax-/- mice. Collectively, our results indicate Bax contributes to RGC dendritic degeneration and distinguishes the proximal and distal neurodegenerative programs involved during the progression of glaucoma.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001399
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 539
Author(s):  
Romain D. Cazé

Multiple studies have shown how dendrites enable some neurons to perform linearly non-separable computations. These works focus on cells with an extended dendritic arbor where voltage can vary independently, turning dendritic branches into local non-linear subunits. However, these studies leave a large fraction of the nervous system unexplored. Many neurons, e.g. granule cells, have modest dendritic trees and are electrically compact. It is impossible to decompose them into multiple independent subunits. Here, we upgraded the integrate and fire neuron to account for saturating dendrites. This artificial neuron has a unique membrane voltage and can be seen as a single layer. We present a class of linearly non-separable computations and how our neuron can perform them. We thus demonstrate that even a single layer neuron with dendrites has more computational capacity than without. Because any neuron has one or more layer, and all dendrites do saturate, we show that any dendrited neuron can implement linearly non-separable computations.


2021 ◽  
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

AbstractIschemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in post-stroke dendritic arbor repair in peri-infarct areas. In Cobl KO mice, the dendritic repair window determined to span day 2-4 post-stroke in WT strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful post-stroke recovery process and identified causal molecular mechanisms critical during post-stroke repair.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rebecca Shi ◽  
Daniel A. Kramer ◽  
Baoyu Chen ◽  
Kang Shen

Abstract Background Dendrite morphogenesis plays an essential role in establishing the connectivity and receptive fields of neurons during the development of the nervous system. To generate the diverse morphologies of branched dendrites, neurons use external cues and cell surface receptors to coordinate intracellular cytoskeletal organization; however, the molecular mechanisms of how this signaling forms branched dendrites are not fully understood. Methods We performed in vivo time-lapse imaging of the PVD neuron in C. elegans in several mutants of actin regulatory proteins, such as the WAVE Regulatory Complex (WRC) and UNC-34 (homolog of Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP)). We examined the direct interaction between the WRC and UNC-34 and analyzed the localization of UNC-34 in vivo using transgenic worms expressing UNC-34 fused to GFP. Results We identify a stereotyped sequence of morphological events during dendrite outgrowth in the PVD neuron in C. elegans. Specifically, local increases in width (“swellings”) give rise to filopodia to facilitate a “rapid growth and pause” mode of growth. In unc-34 mutants, filopodia fail to form but swellings are intact. In WRC mutants, dendrite growth is largely absent, resulting from a lack of both swelling and filopodia formation. We also found that UNC-34 can directly bind to the WRC. Disrupting this binding by deleting the UNC-34 EVH1 domain prevented UNC-34 from localizing to swellings and dendrite tips, resulting in a stunted dendritic arbor and reduced filopodia outgrowth. Conclusions We propose that regulators of branched and linear F-actin cooperate to establish dendritic branches. By combining our work with existing literature, we propose that the dendrite guidance receptor DMA-1 recruits the WRC, which polymerizes branched F-actin to generate “swellings” on a mother dendrite. Then, WRC recruits the actin elongation factor UNC-34/Ena/VASP to initiate growth of a new dendritic branch from the swelling, with the help of the actin-binding protein UNC-115/abLIM. Extension of existing dendrites also proceeds via swelling formation at the dendrite tip followed by UNC-34-mediated outgrowth. Following dendrite initiation and extension, the stabilization of branches by guidance receptors further recruits WRC, resulting in an iterative process to build a complex dendritic arbor.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maryam Izadi ◽  
Eric Seemann ◽  
Dirk Schlobinski ◽  
Lukas Schwintzer ◽  
Britta Qualmann ◽  
...  

Local actin filament formation is indispensable for development of the dendritic arbor of neurons. We show that, surprisingly, the action of single actin filament-promoting factors was insufficient for powering dendritogenesis. Instead, this required the actin nucleator Cobl and its only evolutionary distant ancestor Cobl-like acting interdependently. This coordination between Cobl-like and Cobl was achieved by physical linkage by syndapins. Syndapin I formed nanodomains at convex plasma membrane areas at the base of protrusive structures and interacted with three motifs in Cobl-like, one of which was Ca2+/calmodulin-regulated. Consistently, syndapin I, Cobl-like’s newly identified N terminal calmodulin-binding site and the single Ca2+/calmodulin-responsive syndapin-binding motif all were critical for Cobl-like’s functions. In dendritic arbor development, local Ca2+/CaM-controlled actin dynamics thus relies on regulated and physically coordinated interactions of different F-actin formation-promoting factors and only together they have the power to bring about the sophisticated neuronal morphologies required for neuronal network formation in mammals.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Ashley M. Bourke ◽  
Samantha L. Schwartz ◽  
Aaron B. Bowen ◽  
Mason S. Kleinjan ◽  
Christina S. Winborn ◽  
...  

Here we introduce zapalog-mediated endoplasmic reticulum trap (zapERtrap), which allows one to use light to precisely trigger forward trafficking of diverse integral membrane proteins from internal secretory organelles to the cell surface with single cell and subcellular spatial resolution. To demonstrate its utility, we use zapERtrap in neurons to dissect where synaptic proteins emerge at the cell surface when processed through central (cell body) or remote (dendrites) secretory pathways. We reveal rapid and direct long-range trafficking of centrally processed proteins deep into the dendritic arbor to synaptic sites. Select proteins were also trafficked to the plasma membrane of the axon initial segment, revealing a novel surface trafficking hotspot. Proteins locally processed through dendritic secretory networks were widely dispersed before surface insertion, challenging assumptions for precise trafficking at remote sites. These experiments provide new insights into compartmentalized secretory trafficking and showcase the tunability and spatiotemporal control of zapERtrap, which will have broad applications for regulating cell signaling and function.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 539
Author(s):  
Romain D. Cazé

Multiple studies have shown how dendrites enable some neurons to perform linearly non-separable computations. These works focus on cells with an extended dendritic arbor where voltage can vary independently, turning dendritic branches into local non-linear subunits. However, these studies leave a large fraction of the nervous system unexplored. Many neurons, e.g. granule cells, have modest dendritic trees and are electrically compact. It is impossible to decompose them into multiple independent subunits. Here, we upgraded the integrate and fire neuron to account for saturating dendrites. This artificial neuron has a unique membrane voltage and can be seen as a single layer. We present a class of linearly non-separable computations and how our neuron can perform them. We thus demonstrate that even a single layer neuron with dendrites has more computational capacity than without. Because any neuron has one or more layer, and all dendrites do saturate, we show that any dendrited neuron can implement linearly non-separable computations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Serene Dhawan ◽  
Philip Myers ◽  
David M. D. Bailey ◽  
Aaron D. Ostrovsky ◽  
Jan Felix Evers ◽  
...  

Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.


2021 ◽  
Author(s):  
Maryam Izadi ◽  
Eric Seemann ◽  
Dirk Schlobinski ◽  
Lukas Schwintzer ◽  
Britta Qualmann ◽  
...  

AbstractLocal actin filament formation is indispensable for development of the dendritic arbor of neurons. We show that, surprisingly, the action of single actin filament-promoting factors was insufficient for powering dendritogenesis. Instead, this process required the actin nucleator Cobl and its only evolutionary distant ancestor Cobl-like acting interdependently. This coordination between Cobl-like and Cobl was achieved by physical linkage by syndapin I. Syndapin I formed nanodomains at convex plasma membrane areas at the base of protrusive structures and interacted with three motifs in Cobl-like, one of which was Ca2+/calmodulin-regulated. Consistently, syndapin I, Cobl-like’s newly identified N terminal calmodulin-binding site and the single Ca2+/calmodulin-responsive syndapin-binding motif all were critical for Cobl-like’s functions. In dendritic arbor development, local Ca2+/CaM-controlled actin dynamics thus relies on regulated and physically coordinated interactions of different F-actin formation-promoting factors and only together they have the power to bring about the sophisticated neuronal morphologies required for neuronal network formation.


Sign in / Sign up

Export Citation Format

Share Document