viral resistance
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 39)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mishal Cohen-Rengifo ◽  
Morgane Danion ◽  
Anne-Alicia Gonzalez ◽  
Marie-Laure Bégout ◽  
Lauriane Madec ◽  
...  

Abstract Background Progressive climate-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance internal acid-base homeostasis efficiently, indirect ionic regulation effects that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes of ecological and commercial importance is not yet understood. Farmed fish are highly susceptible to disease outbreak yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted CO2 levels (IPCC RCP8.5), with parents being exposed for four years and their offspring for two years. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F1 offspring) and a viral challenge (exposing F1 offspring to betanodavirus) where we assessed survival rates. Results We discovered long-term intergenerational molecular trade-offs in both sensory and immune systems. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from two-year-old F1 offspring revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected extensive OA-induced intergenerational up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. In addition, intergenerational exposure to OA induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F1 fish challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F1 exposed to OA-intergenerational acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently altered. Our results reveal that trade-offs in adaptive plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed fish, suggesting that intergenerational plasticity propagate with progressive exposure to OA and will have important consequences for how cultured and wild fish interacts with its environment.


2021 ◽  
Author(s):  
Moriya Shmerling ◽  
Michael Chalik ◽  
Nechama I Smorodinsky ◽  
Alan Meeker ◽  
Sujayita Roy ◽  
...  

Syntenic genomic loci on human chromosome 8 (hChr8) and mouse chromosome 15 (mChr15) code for LY6/Ly6 (lymphocyte antigen 6) family proteins. The 23 murine Ly6 family genes include eight genes that are flanked by the murine Ly6e and Ly6l genes and form an Ly6 subgroup referred to here as the Ly6a subfamily gene cluster. Ly6a, also known as Sca1 (Stem Cell Antigen-1) and TAP (T-cell activating protein), is a member of the Ly6a subfamily gene cluster. No LY6 genes have been annotated within the syntenic LY6E to LY6L human locus. We report here on LY6S, a solitary human LY6 gene that is syntenic with the murine Ly6a subfamily gene cluster, and with which it shares a common ancestry. LY6S codes for the interferon-inducible GPI-linked LY6S-iso1 protein that contains only 9 of the 10 consensus LY6 cysteine residues and is most highly expressed in a non-classical cell population. Its expression leads to distinct shifts in patterns of gene expression, particularly of genes coding for inflammatory and immune response proteins, and LY6S-iso1 expressing cells show increased resistance to viral infection. Our findings reveal the presence of a previously un-annotated human interferon-stimulated gene, LY6S, which has a one to eight ortholog relationship with the genes of the Ly6a subfamily gene cluster, is most highly expressed in spleen cells of a non-classical cell-lineage and whose expression induces viral resistance and is associated with an inflammatory phenotype and with the activation of genes that regulate immune responses.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tianchuan Zhu ◽  
Yuchen Xiao ◽  
Xiaojun Meng ◽  
Lantian Tang ◽  
Bin Li ◽  
...  

Abstract Background Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. Results Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. Conclusions In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19. Graphical Abstract


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Md. Shamim Akhter ◽  
Kenji S. Nakahara ◽  
Chikara Masuta

Abstract Background Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. Main body In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. Conclusion A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains.


2021 ◽  
Author(s):  
Yuting Chen ◽  
Eriona Hysolli ◽  
Anlu Chen ◽  
Stephen Casper ◽  
Songlei Liu ◽  
...  

Large-scale recoding has been shown to enable novel amino acids, biocontainment and viral resistance in bacteria only so far. Here we extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~ 40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and multiplex editing in mammalian cells.


Author(s):  
Mohammed Abdulhasan ◽  
Ximena Ruden ◽  
Benjamin Rappolee ◽  
Sudipta Dutta ◽  
Katherine Gurdziel ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1057-1062
Author(s):  
Wesley E. Robertson ◽  
Louise F. H. Funke ◽  
Daniel de la Torre ◽  
Julius Fredens ◽  
Thomas S. Elliott ◽  
...  

It is widely hypothesized that removing cellular transfer RNAs (tRNAs)—making their cognate codons unreadable—might create a genetic firewall to viral infection and enable sense codon reassignment. However, it has been impossible to test these hypotheses. In this work, following synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the tRNAs and release factor 1, which normally decode two sense codons and a stop codon; the resulting cells could not read the canonical genetic code and were completely resistant to a cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins containing three distinct noncanonical amino acids. Notably, we demonstrate the facile reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers and macrocycles.


Sign in / Sign up

Export Citation Format

Share Document