high polymer
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 41)

H-INDEX

44
(FIVE YEARS 3)

Author(s):  
Jhony Habbouche ◽  
Ilker Boz ◽  
Brian K. Diefenderfer ◽  
Benjamin F. Bowers

The objective of this paper was to assess the viability of using high polymer (HP) modified asphalt concrete (AC) mixtures in Virginia as a reflective crack mitigation technique or when deemed appropriate as a tool for increased crack resistance on higher volume facilities. This was achieved by compiling and evaluating routine distress survey data against pre-paving distress survey data for relevant in-service HP pavements constructed between 2015 and 2018 and comparing them with several control in-service conventional polymer-modified asphalt (PMA) pavements. This is the first effort in North America to provide a detailed field performance of HP AC mixtures. In general, none of the evaluated mixtures (HP or PMA) was able to prevent reflective cracking completely. The HP sections showed the most promising performance 5 years after construction regardless of traffic level and the pre-existing pavement conditions. The pavement management system data for the reviewed sections indicated a potential controlling effect of the joint condition of the underlying jointed concrete pavement layer regardless of the asphalt mixture type employed (PMA or HP). Moreover, performance evaluations using the network-level pavement management data were conducted to estimate the life expectancy of HP AC overlays. Two different approaches and three levels of analysis were undertaken. Overall, PMA and HP AC overlays had an average predicted service life of 6.2 and 8.3 years, respectively, indicating a 34% extension of performance life of the AC overlays with high polymer modification.


2021 ◽  
Vol 50 (2) ◽  
pp. 20210283
Author(s):  
Jhony Habbouche ◽  
Murugaiyah Piratheepan ◽  
Elie Y. Hajj ◽  
Sailesh Bista ◽  
Peter E. Sebaaly

Author(s):  
Jhony Habbouche ◽  
Ilker Boz ◽  
Brian K. Diefenderfer ◽  
Sungho Kim

Asphalt concrete (AC) overlays have been one of the most common treatments used by the Virginia Department of Transportation (VDOT) for maintaining/rehabilitating pavements. However, when the overlay is placed on existing composite pavements or cracked AC pavements, differential movements across any cracks or joints can result in physical tearing of the AC overlay. Thus, the long-term performance of many AC overlays will highly depend on their ability to resist cracking. The purpose of this study was to assess the viability of using high polymer-modified (HP) AC mixtures in Virginia as a crack mitigation technique or when deemed appropriate as a tool for increased resistance to rutting and cracking on higher volume facilities. Another objective was to assess the ability of various testing protocols to discern the performance of pavements through a comprehensive evaluation of three conventional polymer-modified (PMA) and five HP field-produced mixtures placed in Virginia. This included laboratory testing at multiple levels of complexity (basic, intermediate, and advanced) on collected asphalt binders, plant-produced asphalt mixtures, and field cores. The performance characteristics of PMA and HP mixes were evaluated in the laboratory in relation to durability and resistance to rutting and cracking. Based on the mixes tested, stone matrix asphalt (SMA) mixes showed better performance than dense-graded surface mixes (SM) regardless of the asphalt binder type. Moreover, HP mixes showed better performance than PMA mixes regardless of the mixture type. Overall, SMA-HP mixes showed the most promising performance among all evaluated mixes.


2021 ◽  
pp. 959-966
Author(s):  
Jhony Habbouche ◽  
Peter E. Sebaaly ◽  
Elie Y. Hajj ◽  
Murugaiyah Piratheepan

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2118
Author(s):  
Rizky Prihandari ◽  
Weeraya Karnpanit ◽  
Suwapat Kittibunchakul ◽  
Varongsiri Kemsawasd

Currently, research on the accumulation of microplastics (MPs) in the marine food web is being highlighted. An accurate and reliable digestion method to extract and isolate MPs from complex food matrices has seldom been validated. This study aimed to compare the efficacy of MP isolation among enzymatic-, oxidative-, and the combination of two digestion methods on red seaweed, Gracilaria fisheri. The dried seaweed sample was digested using three different methods under various conditions using enzymes (cellulase and protease), 30% H2O2, and a combination of enzymes and 30% H2O2. The method possessing the best digestion efficiency and polymer recovery rate of MPs was selected, and its effect on spiked plastic polymer integrity was analyzed by Raman spectroscopy. As a result, the enzymatic method rendered moderate digestion efficiency (59.3–63.7%) and high polymer recovery rate (94.7–98.9%). The oxidative method using 30% H2O2 showed high digestion efficiency (93.0–96.3%) and high polymer recovery rate (>98%). The combination method was the most effective method in terms of digestion efficiency, polymer recovery rate, and expenditure of digestion time. The method also showed no chemical changes in the spiked plastic polymers (PE, PP, PS, PVC, and PET) after the digestion process. All the spiked plastic polymers were identifiable using Raman spectroscopy.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1315
Author(s):  
Jessica B. Alves ◽  
Mateus K. Vasconcelos ◽  
Lys H. R. Mangia ◽  
Maxmiliano Tatagiba ◽  
Juliana Fidalgo ◽  
...  

Polyisobutylenes (PIB) constitute a versatile family of polymer materials that have been used mainly as fuel and lubricant additives. Particularly, the current commercial demand for highly reactive polyisobutylene (HR-PIB) products motivates the development of new processes and procedures to produce PIBs with high polymer yields, narrow molar mass distributions and high vinyl contents. For this reason, a bibliometric survey is presented here to map and discuss important technical aspects and technological trends in the field of solution cationic polymerization of isobutylenes. It is shown that investigations in this field are concentrated mainly on developed countries and that industrial initiatives indicate high commercial interest and significant investments in the field. It is also shown that use of catalyst systems based on AlCl3 and ether cocatalysts can be very beneficial for PIB and HR-PIB manufacture. Finally, it is shown that investigations search for cheaper and environmentally friendly catalysts and solvents that can be employed at moderate temperatures, particularly for the production of HR-PIB.


Small ◽  
2021 ◽  
pp. 2102107
Author(s):  
Margaret S. Lee ◽  
Alfredo Alexander‐Katz ◽  
Robert J. Macfarlane

Sign in / Sign up

Export Citation Format

Share Document