islet graft
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 27)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4<sup>+</sup> and CD8<sup>+</sup> T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4<sup>+</sup> and CD8<sup>+</sup> T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


Diabetes ◽  
2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4+ T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4+ and CD8+ T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


2021 ◽  
Vol 105 (12S1) ◽  
pp. S17-S17
Author(s):  
Jacqueline Burke ◽  
Xiaoming Zhang ◽  
Molly A. Frey ◽  
Sharan Kumar Reddy Bobbala ◽  
Reese AK Richardson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 105 (12S1) ◽  
pp. S66-S66
Author(s):  
KaLia Burnette ◽  
Samuel I. Blum

2021 ◽  
Vol 12 ◽  
Author(s):  
Fritz Cayabyab ◽  
Lina R. Nih ◽  
Eiji Yoshihara

Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenjiro Kumano ◽  
Mazhar A. Kanak ◽  
Prathab Balaji Saravanan ◽  
J. P. Blanck ◽  
Yang Liu ◽  
...  

AbstractThe immunosuppressive regimen for clinical allogeneic islet transplantation uses beta cell–toxic compounds such as tacrolimus that cause islet graft loss. Previously we reported that the plant-derived steroidal lactone Withaferin A (WA) can protect islet grafts by inhibiting nuclear factor-kappa B (NF-κB). Since the NF-κB signaling pathway is essential for T-cell activation, we hypothesized that long-term WA administration may also provide an immunosuppressive effect. Treatment of BALB/c donor islets and C57BL/6N recipients with WA alone resulted in 80% islet graft long-term survival vs. 40% in low-dose FK506-treated mice. In vitro, WA significantly blocked mouse and human T-cell proliferation by CD3/CD28 bead stimulation and in mixed lymphocyte reaction assay. Treatment of immature dendritic cells with WA prevented their maturation in response to inflammatory stimuli, as seen by decreased expression of CD83 and human leukocyte antigen–DR isotype. Exosomes released by islets treated with WA contained significantly fewer proinflammatory molecules interleukin-6, interleukin-8, monocyte chemoattractant protein-1, interferon-gamma-induced protein-10, inducible nitric oxide synthase, and cyclooxygenase-2. In conclusion, WA treatment not only reduced inflammation but also prolonged allograft survival, possibly through suppression of dendritic cell maturation and T-cell proliferation. WA has the potential to inhibit both the innate and adaptive immune response to prolong allograft survival.


2021 ◽  
Vol 8 ◽  
Author(s):  
Suzanne Bertera ◽  
Michael F. Knoll ◽  
Carmela Knoll ◽  
Hidetaka Hara ◽  
Erin A. Kimbrel ◽  
...  

Islet transplantation can restore glycemic control in patients with type 1 diabetes. Using this procedure, the early stages of engraftment are often crucial to long-term islet function, and outcomes are not always successful. Numerous studies have shown that mesenchymal stem cells (MSCs) facilitate islet graft function. However, experimental data can be inconsistent due to variables associated with MSC generation (including donor characteristics and tissue source), thus, demonstrating the need for a well-characterized and uniform cell product before translation to the clinic. Unlike bone marrow- or adipose tissue-derived MSCs, human embryonic stem cell-derived-MSCs (hESC-MSCs) offer an unlimited source of stable and highly-characterized cells that are easily scalable. Here, we studied the effects of human hemangioblast-derived mesenchymal cells (HMCs), (i.e., MSCs differentiated from hESCs using a hemangioblast intermediate), on islet cell transplantation using a minimal islet mass model. The co-transplantation of the HMCs allowed a mass of islets that was insufficient to correct diabetes on its own to restore glycemic control in all recipients. Our in vitro studies help to elucidate the mechanisms including reduction of cytokine stress by which the HMCs support islet graft protection in vivo. Derivation, stability, and scalability of the HMC source may offer unique advantages for clinical applications, including fewer islets needed for successful islet transplantation.


Stem Cells ◽  
2021 ◽  
Vol 39 (8) ◽  
pp. 1033-1048
Author(s):  
Ying Wang ◽  
Jing‐Wen Wang ◽  
Yang Li ◽  
Xiao‐Hui Tian ◽  
Xin‐Shun Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document