reporter cell line
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 42)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 641
Author(s):  
Vladimir Morozov ◽  
Sylvie Lagaye ◽  
Alexey Morozov

Induction of broadly neutralizing antibodies targeting ectodomain of the transmembrane (TM) glycoprotein gp41 HIV-1 provides a basis for the development of a universal anti-viral vaccine. The HeLa cell-derived TZM-bl reporter cell line is widely used for the estimation of lentiviruses neutralization by immune sera. The cell line is highly permissive to infection by most strains of HIV, SIV, and SHIV. Here we demonstrated that TZM-bl cells express a 48 kDa non-glycosylated protein (p48) recognized by broadly neutralizing monoclonal antibody (mAb) 2F5 targeting the ELDKWA (aa 669–674) epitope of gp41TM of HIV-1. A significant amount of p48 was found in the cell supernatant. The protein was identified as human kynureninase (KYNU), which has the ELDKWA epitope. The protein is further called “p48 KYNU”. The HIV-1 neutralization by mAb 2F5 and 4E10 in the presence of p48KYNU was tested on Jurkat and TZM-bl cells. It was demonstrated that p48KYNU reduces neutralization by 2F5-like antibodies, but it has almost no effect on mAb 4E10. Therefore, p48KYNU can attenuate HIV-1 neutralization by 2F5-like antibodies and hence create false-negative results. Thus, previously tested immune sera that recognized the ELDKWA-epitope and demonstrated a “weak neutralization” of HIV-1 in TZM-bl assay should be reevaluated.


2021 ◽  
Author(s):  
Laure Bidou ◽  
Olivier Bugaud ◽  
Goulven Merer ◽  
Matthieu Coupet ◽  
Isabelle Hatin ◽  
...  

Premature termination codons (PTCs) account for 10% to 20% of genetic diseases in humans. The gene inactivation resulting from PTC can be counteracted by the use of drugs stimulating PTC readthrough, thereby restoring production of the full-length protein. However, a greater chemical variety of readthrough inducers is required to broaden the medical applications of this therapeutic strategy. In this study, we developed a new reporter cell line and performed high-throughput screening (HTS) to identify potential new readthrough inducers. After three successive assays, we isolated 2-guanidino-quinazoline (TLN468). We assessed the clinical potential of this drug as a potent readthrough inducer on the 40 PTCs most frequently responsible for Duchenne muscular dystrophy. We found that TLN468 was more efficient than gentamicin, and acted on a broader range of sequences, without inducing the readthrough of natural stop codons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabian Stahl ◽  
Philip Denner ◽  
Dominik Piston ◽  
Bernd O. Evert ◽  
Laura de Boni ◽  
...  

AbstractMultiplications, mutations and dysregulation of the alpha synuclein gene (SNCA) are associated with the demise of dopaminergic neurons and are considered to play important roles in the pathogenesis of familial and sporadic forms of Parkinson’s disease. Regulation of SNCA expression might thus be an appropriate target for treatment. We aimed to identify specific modulators of SNCA transcription, generated CRISPR/Cas9 modified SNCA-GFP-luciferase (LUC) genomic fusion- and control cell lines and screened a library of 1649 bioactive compounds, including the FDA approved drugs. We found no inhibitors but three selective activators which increased SNCA mRNA and protein levels.


2021 ◽  
Author(s):  
Eugenia Fraile-Bethencourt ◽  
Marie H Foss ◽  
Dylan Nelson ◽  
Sanjay V Malhotra ◽  
Sudarshan Anand

Enhancing the immune microenvironment in cancer by targeting the nucleic acid sensors is becoming a potent therapeutic strategy. Among the nucleic acid sensors, activation of the RNA sensor Retinoic Acid-inducible Gene (RIG-I) using small hairpin RNAs has been shown to elicit powerful innate and adaptive immune responses. Given the challenges inherent in pharmacokinetics and delivery of RNA based agonists, we set out to discover small molecule agonists of RIG-I using a cell-based assay. To this end, we established and validated a robust high throughput screening assay based on a commercially available HEK293 reporter cell line with a luciferase reporter downstream of tandem interferon stimulated gene 54 (ISG54) promoter elements. We first confirmed that the luminescence in this cell line is dependent on RIG-I and the interferon receptor using a hairpin RNA RIG-I agonist. We established a 96-well and a 384-well format HTS based on this cell line and performed a proof-of-concept screen using an FDA approved drug library of 1200 compounds. Surprisingly, we found two HDAC inhibitors Entinostat, Mocetinostat and the PLK1 inhibitor Volasertib significantly enhanced ISG-luciferase activity. This luminescence was substantially diminished in the null reporter cell line indicating the increase in signaling was dependent on RIG-I expression. Treatment of tumor cell lines with Entinostat, Mocetinostat or Volasertib induced interferon signature genes and increased RIG-I induced cell death in a mammary carcinoma cell line. Taken together, our data indicates an unexpected role for HDAC1,-3 inhibitors and PLK1 inhibitors in enhancing RIG-I signaling and highlight potential opportunities for therapeutic combinations.


2021 ◽  
Author(s):  
Fabian Stahl ◽  
Philip Denner ◽  
Dominik Piston ◽  
Bernd Evert ◽  
Ina Schmitt ◽  
...  

Abstract Multiplications, mutations and dysregulation of the alpha synuclein gene (SNCA) are associated with the demise of dopaminergic neurons and are considered to play important roles in the pathogenesis of familial and sporadic forms of Parkinson’s disease. Regulation of SNCA expression might thus be an appropriate target for treatment. We aimed to identify specific modulators of SNCA transcription, generated CRISPR/Cas9 modified SNCA-GFP-luciferase (LUC) genomic fusion- and control cell lines and screened a library of 1649 bioactive compounds, including the FDA approved drugs. We found no inhibitors but three selective activators which increased SNCA mRNA and protein levels.


2021 ◽  
Vol 292 ◽  
pp. 114116
Author(s):  
Michael Schuit ◽  
Rebecca Dunning ◽  
Denise Freeburger ◽  
David Miller ◽  
Idris Hooper ◽  
...  

2021 ◽  
Author(s):  
Marek Widera ◽  
Alexander Wilhelm ◽  
Tuna Toptan ◽  
Johanna M. Raffel ◽  
Eric Kowarz ◽  
...  

SummaryThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile reporter cell system that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The reporter cell is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression in A549 cells. Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected reporter cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel reporter cell line allows rapid and sensitive detection of SARS-CoV-2 infection and the screening for host factors essential for viral replication.Highlights- Sleeping Beauty transposon-based cellular system was used to generate a highly susceptible cell line for monitoring SARS-CoV-2 infection- The versatile reporter cell line A549-AT is suitable for rapid and sensitive high-throughput assays- Additional gene specific expression cassettes allow the identification of SARS-CoV-2 host dependency and restriction factors


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonathan Shpigelman ◽  
Fitzgerald S. Lao ◽  
Shiyin Yao ◽  
Chenyang Li ◽  
Tetsuya Saito ◽  
...  

Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z′ factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.


Sign in / Sign up

Export Citation Format

Share Document