allosteric pathway
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunli Yan ◽  
Thomas Dodd ◽  
Jina Yu ◽  
Bernice Leung ◽  
Jun Xu ◽  
...  

AbstractTranscription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.


2021 ◽  
Author(s):  
Genis Valentin Gese ◽  
Saba Shahzad ◽  
Carlos Pardo-Hernandez ◽  
Anna Wramstedt ◽  
Maria Falkenberg ◽  
...  

The hexameric, barrel-forming, AAA+ protease Lon is critical for maintaining mitochondrial matrix protein homeostasis. Efficient substrate processing by Lon requires the coordinated action of six protomers. Despite Lon's importance for human health, the molecular bases for Lon's substrate recognition and processing remain unclear. Here, we use a combination of biochemistry and electron cryomicroscopy (cryo-EM) to unveil the structural and functional basis for full-length human mitochondrial Lon's degradation of mitochondrial transcription factor A (TFAM). We show how opposing protomers in the Lon hexamer barrel interact through their N-terminal domains to give what resembles three feet above the barrel and help to form a triangular pore located just above the entry pore to the barrel. The interactions between opposing protomers constitute a primary allosteric regulation of Lon activity. A secondary allosteric regulation consists of an inter-subunit signaling element in the ATPase domains. By considering the ATP or ADP load in each protomer, we show how this dual allosteric mechanism in Lon achieves coordinated ATP hydrolysis and substrate processing. This mechanism enforces sequential anti-clockwise ATP hydrolysis resulting in a coordinated hand-over-hand translocation of the substrate towards the protease active sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuval Bin Kanner ◽  
Assaf Ganoth ◽  
Yossi Tsfadia

AbstractDynamic conformational changes play a major role in the function of proteins, including the ATP-Binding Cassette (ABC) transporters. Multidrug Resistance Protein 1 (MRP1) is an ABC exporter that protects cells from toxic molecules. Overexpression of MRP1 has been shown to confer Multidrug Resistance (MDR), a phenomenon in which cancer cells are capable to defend themselves against a broad variety of drugs. In this study, we used varied computational techniques to explore the unique F583A mutation that is known to essentially lock the transporter in a low-affinity solute binding state. We demonstrate how macro-scale conformational changes affect MRP1’s stability and dynamics, and how these changes correspond to micro-scale structural perturbations in helices 10–11 and the nucleotide-binding domains (NBDs) of the protein in regions known to be crucial for its ATPase activity. We demonstrate how a single substitution of an outward-facing aromatic amino acid causes a long-range allosteric effect that propagates across the membrane, ranging from the extracellular ECL5 loop to the cytoplasmic NBD2 over a distance of nearly 75 Å, leaving the protein in a non-functional state, and provide the putative allosteric pathway. The identified allosteric structural pathway is not only in agreement with experimental data but enhances our mechanical understanding of MRP1, thereby facilitating the rational design of chemosensitizers toward the success of chemotherapy treatments.


2020 ◽  
Vol 22 (1) ◽  
pp. 104
Author(s):  
Peter Franz ◽  
Wiebke Ewert ◽  
Matthias Preller ◽  
Georgios Tsiavaliaris

The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.


2020 ◽  
Vol 63 (22) ◽  
pp. 13733-13744
Author(s):  
Ziqian Wang ◽  
Ting Song ◽  
Zongwei Guo ◽  
Keke Cao ◽  
Chao Chen ◽  
...  

2020 ◽  
Vol 29 (9) ◽  
pp. 1911-1923
Author(s):  
Yvonne H. Chan ◽  
Konstantin B. Zeldovich ◽  
Charles R. Matthews

2020 ◽  
Vol 117 (10) ◽  
pp. 5298-5309
Author(s):  
Enrico Rennella ◽  
Rui Huang ◽  
Zanlin Yu ◽  
Lewis E. Kay

The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high–molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called “hybrid” proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.


2019 ◽  
Vol 5 (10) ◽  
pp. eaaw3353 ◽  
Author(s):  
Martijn van Galen ◽  
Ruben Higler ◽  
Joris Sprakel

Assembling large numbers of molecular building blocks into functional nanostructures is no trivial task. It relies on guiding building blocks through complex energy landscapes shaped by synergistic and antagonistic supramolecular interactions. In nature, the use of molecular templates is a potent strategy to navigate the process to the desired structure with high fidelity. Yet, nature’s templating strategy remains to be fully exploited in man-made nanomaterials. Designing effective template-guided self-assembling systems can only be realized through precise insight into how the chemical design of building blocks and the resulting balance of repulsive and attractive forces give rise to pathway selection and suppression of trapped states. We develop a minimal model to unravel the kinetic pathways and pathway selection of the templated assembly of molecular building blocks on a template. We show how allosteric activation of the associative interactions can suppress undesired solution-aggregation pathways and gives rise to a true template-assembly path.


Structure ◽  
2019 ◽  
Vol 27 (8) ◽  
pp. 1308-1315.e3 ◽  
Author(s):  
William M. Marsiglia ◽  
Joseph Katigbak ◽  
Sijin Zheng ◽  
Moosa Mohammadi ◽  
Yingkai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document