pheromone production
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 30)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12641
Author(s):  
Shu-Mei Nuo ◽  
An-Jin Yang ◽  
Gen-Ceng Li ◽  
Hai-Yan Xiao ◽  
Nai-Yong Liu

In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1062
Author(s):  
Qing-Hai Wang ◽  
Xing Gao ◽  
Hong-Song Yu ◽  
Ze Zhang ◽  
Quan-You Yu

Sex pheromones are vital to sexual communication and reproduction in insects. Although some key enzymes in pheromone production have been well studied, information on genes involved in the terminal pathway is limited. The domestic silkworm employs a pheromone blend containing (E,Z)-10,12-hexadecadienol (bombykol) and analogous (E,Z)-10,12-hexadecadienal (bombykal); whereas, its wild ancestor B. mandarina uses only bombykol. The two closely related moths might be a good model for exploring the genes involved in aldehyde pheromone synthesis and metabolism. By deep sequencing and analyzing the sex pheromone gland (PG) transcriptomes; we identified 116 candidate genes that may be related to pheromone biosynthesis, metabolism, and chemoreception. Spatiotemporal expression profiles and differentially expressed analysis revealed that four alcohol oxidases (BmorAO1; 2; 3; and 4); one aldehyde reductase (BmorAR1); and one aldehyde oxidase (BmorAOX5) might be involved in the terminal pathway. Phylogenetic analysis showed that, except for BmorAO3 and MsexAO3, AOs did not show a conversed orthologous relationship among moths; whereas, ARs and AOXs were phylogenetically conserved. This study provides crucial candidates for further functional elucidation, and which may be utilized as potential targets to disrupt sexual communication in other moth pests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoling Zhang ◽  
Qin Miao ◽  
Xia Xu ◽  
Boyang Ji ◽  
Lingbo Qu ◽  
...  

The use of traditional chemical insecticides for pest control often leads to environmental pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied for sustainable biocontrol of pests in fields, due to their limited adverse impacts on biodiversity and food safety compared to that of other conventional insecticides. However, the structures of insect pheromones are complex, and their chemical synthesis is not commercially feasible. As yeasts have been widely used for fatty acid-derived pheromone production in the past few years, using engineered yeasts may be promising and sustainable for the low-cost production of fatty acid-derived pheromones. The primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16 and C18, and it is also possible to rewire/reprogram the metabolic flux for other fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic engineering and synthetic biology strategies to produce insect pheromones. In the future, insect pheromones produced by yeasts might provide an eco-friendly pest control method in agricultural fields.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 893
Author(s):  
Lindsey C. Perkin ◽  
Jose L. Perez ◽  
Charles P.-C. Suh

Eradication programs for the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), rely almost exclusively on pheromone traps to indicate the need for insecticide applications. However, the effectiveness of traps in detecting weevil populations is reduced during certain times of the year, particularly when cotton is actively fruiting. Consequently, this could result in fields becoming heavily infested with weevils. It is widely speculated that the lack of weevil captures in traps during this period is largely due to the overwhelming amount of pheromone released by weevils in the field, which outcompete the pheromone released from traps. Thus, this work sought to identify genes involved in pheromone production so that new control methods that target these genes can be explored. We conducted an RNA-seq experiment that revealed 2479 differentially expressed genes between pheromone-producing and non-pheromone-producing boll weevils. Of those genes, 1234 were up-regulated, and 1515 were down-regulated, and most had gene annotations associated with pheromone production, development, or immunity. This work advances our understanding of boll weevil pheromone production and brings us one step closer to developing gene-level control strategies for this cotton pest.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 889
Author(s):  
Yanpeng Chang ◽  
Yunhui Zhang ◽  
Zichen Geng ◽  
Shuangyan Yao ◽  
Wenli Zhao ◽  
...  

Acetyl-CoA, the precursor of sex pheromone biosynthesis in Helicoverpa armigera, is generated from glycolysis. As the first speed-limited enzyme in glycolysis, Hexokinase (HK) plays an important role in acetyl-CoA production. However, the function of HK in sex pheromone production remains unclear. This study employed H. armigera as material to explore the role of HK in sex pheromone production. Results demonstrated that the transcription profile of HaHK in female moth pheromone glands (PGs) was consistent with the release fluctuation of sex pheromone. Interference of HaHK prevented the increase of acetyl-CoA content induced by PBAN. Therefore, knockdown of HaHK in female PGs caused significant decreases in (Z)-11-hexadecenal (Z11-16:Ald) production, female capability to attract males, and mating rate. Furthermore, sugar feeding (5% sugar) increased the transcription and enzymatic activity of HK. Pheromone biosynthesis activating neuropeptide (PBAN) signal phospho-activated HaHK in PGs and Sf9 cells via protein kinase A (PKA), as shown by pharmacological inhibitor analysis. In general, our study confirmed that PBAN/cAMP/PKA signal activated HaHK, in turn promoted glycolysis to ensure the supply of acetyl-CoA, and finally facilitated sex pheromone biosynthesis and subsequent mating behavior.


2021 ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract BackgroundUnder strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher pheromone quantities than fighters, which would improve the fitness of the scrambler phenotype, e.g. through female mimicry to avoid aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of the female sex pheromone α-acaridial through gas chromatography analysis. ResultsWe found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. ConclusionFurther elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Author(s):  
Adam N Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield-Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male polymorphic species. Here, we used the bulb mite — in which males are either armed fighters that kill conspecifics, or unarmed scramblers — as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher pheromone quantities than fighters, which would improve the fitness of the scrambler phenotype, e.g. through female mimicry to avoid aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of the female sex pheromone α acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a byproduct of allometric scaling, or diet mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Melanie Unbehend ◽  
Genevieve M. Kozak ◽  
Fotini Koutroumpa ◽  
Brad S. Coates ◽  
Teun Dekker ◽  
...  

AbstractThe sex pheromone system of ~160,000 moth species acts as a powerful form of assortative mating whereby females attract conspecific males with a species-specific blend of volatile compounds. Understanding how female pheromone production and male preference coevolve to produce this diversity requires knowledge of the genes underlying change in both traits. In the European corn borer moth, pheromone blend variation is controlled by two alleles of an autosomal fatty-acyl reductase gene expressed in the female pheromone gland (pgFAR). Here we show that asymmetric male preference is controlled by cis-acting variation in a sex-linked transcription factor expressed in the developing male antenna, bric à brac (bab). A genome-wide association study of preference using pheromone-trapped males implicates variation in the 293 kb bab intron 1, rather than the coding sequence. Linkage disequilibrium between bab intron 1 and pgFAR further validates bab as the preference locus, and demonstrates that the two genes interact to contribute to assortative mating. Thus, lack of physical linkage is not a constraint for coevolutionary divergence of female pheromone production and male behavioral response genes, in contrast to what is often predicted by evolutionary theory.


Sign in / Sign up

Export Citation Format

Share Document