triazine ring
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3942
Author(s):  
Dawid Maliszewski ◽  
Agnieszka Wróbel ◽  
Beata Kolesińska ◽  
Justyna Frączyk ◽  
Danuta Drozdowska

A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.


2021 ◽  
Vol 22 (6) ◽  
pp. 3159
Author(s):  
Eugene Arthur-Baidoo ◽  
Joao Ameixa ◽  
Milan Ončák ◽  
Stephan Denifl

We investigate dissociative electron attachment to tirapazamine through a crossed electron–molecule beam experiment and quantum chemical calculations. After the electron is attached and the resulting anion reaches the first excited state, D1, we suggest a fast transition into the ground electronic state through a conical intersection with a distorted triazine ring that almost coincides with the minimum in the D1 state. Through analysis of all observed dissociative pathways producing heavier ions (90–161 u), we consider the predissociation of an OH radical with possible roaming mechanism to be the common first step. This destabilizes the triazine ring and leads to dissociation of highly stable nitrogen-containing species. The benzene ring is not altered during the process. Dissociation of small anionic fragments (NO2−, CN2−, CN−, NH2−, O−) cannot be conclusively linked to the OH predissociation mechanism; however, they again do not require dissociation of the benzene ring.


2021 ◽  
Author(s):  
Hao Guo ◽  
Lei Sun ◽  
Meng Yang ◽  
Mingyue Wang ◽  
Ning Wu ◽  
...  

In this work, a covalent organic framework (COF) TAPT-TFP-COF containing a triazine ring was prepared by a typical Schiff base condensation reaction of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) and 1,3,5-triformyl phloroglucinol (TFP).


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5779
Author(s):  
Cui Ren ◽  
Juanxia Wang ◽  
Youzhen Tan ◽  
Mingxin Guo ◽  
Jieqing Guo ◽  
...  

Herein, we sought to evaluate the contribution of the 1,3,5-triazine ring through the metformin cyclization unit to the biological activity of magnolol and honokiol-conjugates. One of the phenolic OH groups of magnolol or honokiol was replaced by a 1,3,5-triazine ring to further explore their synthesis and medicinal versatility. In this study, a robust procedure of three steps was adopted for the synthesis of magnolol and honokiol derivatives by alkylation of potassium carbonate with a 1,3,5-triazine ring. To our knowledge, this is the first report to connect one of the phenolic OH positions of magnolol or honokiol to a 1,3,5-triazine ring cyclized by metformin. The structural characterization of three new compounds was carried out via spectroscopic techniques, i.e., 13C NMR, 1H NMR, and HRMS. Surprisingly, these compounds showed no cytotoxicity against RAW 264.7 macrophages but significantly inhibited the proliferation of MCF-7 (human breast cancer cells), HepG2 (human hepatoma cells), A549 (human lung carcinoma cells), and BxPC-3 (human pancreatic carcinoma cells) tumor cell lines. Furthermore, the compounds also significantly inhibited the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the lipopolysaccharide (LPS)-activated mouse cells (RAW 264.7). Among them, compound 2 demonstrated promising broad-spectrum antiproliferative potential with half inhibitory concentration (IC50) values ranging from 5.57 to 8.74 µM and it significantly decreased caspase-3 and Bcl-2 expression in HepG2 cells. These interesting findings show that derivatization of magnolol and honokiol with 1,3,5-triazine affects and modulates their biological properties.


2020 ◽  
Vol 56 (12) ◽  
pp. 1569-1578
Author(s):  
Alexei N. Izmest’ev ◽  
Galina A. Gazieva ◽  
Natalya G. Kolotyrkina ◽  
Elena D. Daeva ◽  
Angelina N. Kravchenko

2020 ◽  
Vol 17 (5) ◽  
pp. 605-624
Author(s):  
Reda M. Abdel-Rahman ◽  
Mohammed A. Assiri ◽  
Ahmed M. Fouda ◽  
Tarik E. Ali

3-Amino-1,2,4-triazines are considered versatile compounds for its significance as building blocks in synthetic and pharmaceutical chemistry. The synthesis, chemical reactivity, and applications of substituted 1,2,4-triazines bearing an amino group were described in this review. The presence of the amino group at position 3 exhibited unique reactivities towards carbonitrile, carbonyl and isothiocyanate reagents. The reactions were divided into several categories, depending on the other substituents on the 1,2,4-triazine ring. In this review, relevant and appropriate applications of the synthesized, isolated, and condensed heterocycles derivatives were reported.


Gels ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 21
Author(s):  
Martin Prostredný ◽  
Caio Ledingham ◽  
Ivan A. Principe ◽  
Abdelkarim S. M. Altoumi ◽  
Ashleigh J. Fletcher

Resorcinol (R) and formaldehyde (F) gel synthesis has been well-studied along with alternative reagents. We present the synthesis of formaldehyde-based xerogels using chemically similar s-triazine precursors, with comparison to traditional analogues. The substitution ranges from tri-hydroxyl to tri-amine, with an intermediate species, allowing changing chemistry to be investigated. Each molecule (X) offers different acid/base properties, known to influence gel formation, as well as differences in crosslinking potential. Varying X/F ratios were selected to recreate the stoichiometry used in RF systems, where one represented higher F to match the increased reaction sites of the additives. X/C ratios were selected to probe different catalyst (C) ratios, while working within the range likely to produce viable gels. Results obtained show little impact for ammeline as an additive due to its similarity to resorcinol (activation sites and pKa); while melamine and cyanuric acid show differing behavior depending on the level of addition. Low concentrations show melamine to have the most impact due to increased activation and competition for formaldehyde; while at high concentrations, cyanuric acid is shown to have the greatest impact as it creates a more acidic environment, which diminishes textural character, possibly attributable to larger clusters and/or weaker cross-linking of the system.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 245
Author(s):  
Yao-Guo Qin ◽  
Zhao-Kai Yang ◽  
Jia Fan ◽  
Xin Jiang ◽  
Xin-Ling Yang ◽  
...  

The compound N-(5-(4-chlorobenzyl)-1,3,5-triazinan-2-ylidene)nitramide (C10H12ClN5O2, M = 269.70) was synthesized and structurally confirmed by 1H NMR, 13C NMR, HRMS and single-crystal x-ray diffraction. The crystal belongs to the monoclinic system with space group P21/c. The title compound consisted of a benzene ring and a 1,3,5-triazine ring. All carbon atoms in the benzene ring were nearly coplanar with a dihedral (C6–C5–C10 and C7–C8–C9) angle of 1.71°and all non-hydrogen atoms of the 1,3,5-triazine ring were not planar, but exhibited a half-chair conformation. The crystal structure was stabilized by a strong intramolecular hydrogen bonding interaction N(3)–H(3)···O(2) and three intermolecular hydrogen bonding interactions, N(2)–H(2)···O(1), N(2)–H(2)···N(4) and N(3)–H(3)···Cl(1). The preliminary bioassay showed that the title compound showed not only aphicidal activity against Sitobion miscanthi (inhibition rate: 74.1%) and Schizaphis graminum (77.5%), but also antifungal activities against Pythium aphanidermatum (62.0%). These results provide valuable guidelines for the design and synthesis of novel aphid control agents and fungicides.


2020 ◽  
Vol 31 (1) ◽  
pp. 15
Author(s):  
Dr.Neihaya Heikmat Zaki

Twenty five samples were collected from the soil around the Tigris River from different locations in Iraqi cities, and 45 bacterial isolates were obtained. Three of these isolates were further tested for their degrading capacity of Bisphenol A (BPA) in Basal Mineral Medium, included: Pseudomonas orizohibtanis, Escherishia coli and Proteus penneri. The optimal temperature for the removal of BPA was determined at 20˚C, 37˚ and 45˚C for 1, 5, and 15 days, and the degradation increased up to a temperature of 37°C. Growth test was performed on isolated bacteria with BisPhenol A as the sole carbon source, and with increasing incubation time, the culture grew almost linearly to 24 hours. BPA decreased after 1days after incubating with tested bacterial isolates, and almost broken after 5 days, while it disappeared after 15 days at 37C, and Pseudomonas orizohibtanis exhibited the best degradation of BPA. The absorbance peaks in the UV region appeared at 222 and 276 nm and attributed to the benzene ring and triazine ring respectively. The end products of BPA degradation were analyzed by GCMS after 15 days of incubation. The chromatogram for Pseudomanas orizohibtanis showed three peaks at retention times of 70, 210 and 280 min, and referred to hexasiloxane, heptasiloxane, and Octasiloxane respectively. The present study was aimed to isolate bacteria from the soil of the Tigris River, and determined the ability to degrade Bisphenol-A, and characterized the environmental conditions of bacterial growth, and then analysis the products of the degradation by GC-MS.


Sign in / Sign up

Export Citation Format

Share Document