homotopy equivalence
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol Volume 5 ◽  
Author(s):  
Burt Totaro

We formulate a conjecture on actions of the multiplicative group in motivic homotopy theory. In short, if the multiplicative group G_m acts on a quasi-projective scheme U such that U is attracted as t approaches 0 in G_m to a closed subset Y in U, then the inclusion from Y to U should be an A^1-homotopy equivalence. We prove several partial results. In particular, over the complex numbers, the inclusion is a homotopy equivalence on complex points. The proofs use an analog of Morse theory for singular varieties. Application: the Hilbert scheme of points on affine n-space is homotopy equivalent to the subspace consisting of schemes supported at the origin.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1421
Author(s):  
Susmit Bagchi

The interactions between topological covering spaces, homotopy and group structures in a fibered space exhibit an array of interesting properties. This paper proposes the formulation of finite covering space components of compact Lindelof variety in topological (C, R) spaces. The covering spaces form a Noetherian structure under topological injective embeddings. The locally path-connected components of covering spaces establish a set of finite topological groups, maintaining group homomorphism. The homeomorphic topological embedding of covering spaces and base space into a fibered non-compact topological (C, R) space generates two classes of fibers based on the location of identity elements of homomorphic groups. A compact general fiber gives rise to the discrete variety of fundamental groups in the embedded covering subspace. The path-homotopy equivalence is admitted by multiple identity fibers if, and only if, the group homomorphism is preserved in homeomorphic topological embeddings. A single identity fiber maintains the path-homotopy equivalence in the discrete fundamental group. If the fiber is an identity-rigid variety, then the fiber-restricted finite and symmetric translations within the embedded covering space successfully admits path-homotopy equivalence involving kernel. The topological projections on a component and formation of 2-simplex in fibered compact covering space embeddings generate a prime order cyclic group. Interestingly, the finite translations of the 2-simplexes in a dense covering subspace assist in determining the simple connectedness of the covering space components, and preserves cyclic group structure.


Author(s):  
Claudio Meneses

We survey several mathematical developments in the holonomy approach to gauge theory. A cornerstone of this approach is the introduction of group structures on spaces of based loops on a smooth manifold, relying on certain homotopy equivalence relations — such as the so-called thin homotopy — and the resulting interpretation of gauge fields as group homomorphisms to a Lie group G G satisfying a suitable smoothness condition, encoding the holonomy of a gauge orbit of smooth connections on a principal G G -bundle. We also prove several structural results on thin homotopy, and in particular we clarify the difference between thin equivalence and retrace equivalence for piecewise-smooth based loops on a smooth manifold, which are often used interchangeably in the physics literature. We conclude by listing a set of questions on topological and functional analytic aspects of groups of based loops, which we consider to be fundamental to establish a rigorous differential geometric foundation of the holonomy formulation of gauge theory.


2021 ◽  
Vol 9 ◽  
Author(s):  
Simon Felten ◽  
Matej Filip ◽  
Helge Ruddat

Abstract We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.


Author(s):  
Francesco Bonechi ◽  
Nicola Ciccoli ◽  
Camille Laurent-Gengoux ◽  
Ping Xu

Abstract The purpose of this paper is to investigate $(+1)$-shifted Poisson structures in the context of differential geometry. The relevant notion is that of $(+1)$-shifted Poisson structures on differentiable stacks. More precisely, we develop the notion of the Morita equivalence of quasi-Poisson groupoids. Thus, isomorphism classes of $(+1)$-shifted Poisson stacks correspond to Morita equivalence classes of quasi-Poisson groupoids. In the process, we carry out the following program, which is of independent interest: (1) We introduce a ${\mathbb{Z}}$-graded Lie 2-algebra of polyvector fields on a given Lie groupoid and prove that its homotopy equivalence class is invariant under the Morita equivalence of Lie groupoids, and thus they can be considered to be polyvector fields on the corresponding differentiable stack ${\mathfrak{X}}$. It turns out that $(+1)$-shifted Poisson structures on ${\mathfrak{X}}$ correspond exactly to elements of the Maurer–Cartan moduli set of the corresponding dgla. (2) We introduce the notion of the tangent complex $T_{\mathfrak{X}}$ and the cotangent complex $L_{\mathfrak{X}}$ of a differentiable stack ${\mathfrak{X}}$ in terms of any Lie groupoid $\Gamma{\rightrightarrows } M$ representing ${\mathfrak{X}}$. They correspond to a homotopy class of 2-term homotopy $\Gamma$-modules $A[1]\rightarrow TM$ and $T^{\vee } M\rightarrow A^{\vee }[-1]$, respectively. Relying on the tools of theory of VB-groupoids including homotopy and Morita equivalence of VB-groupoids, we prove that a $(+1)$-shifted Poisson structure on a differentiable stack ${\mathfrak{X}}$ defines a morphism ${L_{\mathfrak{X}}}[1]\to{T_{\mathfrak{X}}}$.


2020 ◽  
Vol 27 (4) ◽  
pp. 541-556
Author(s):  
Kadir Emir ◽  
Selim Çetin

AbstractWe address the (pointed) homotopy of crossed module morphisms in modified categories of interest that unify the notions of groups and various algebraic structures. We prove that the homotopy relation gives rise to an equivalence relation as well as to a groupoid structure with no restriction on either domain or co-domain of the corresponding crossed module morphisms. Furthermore, we also consider particular cases such as crossed modules in the categories of associative algebras, Leibniz algebras, Lie algebras and dialgebras of the unified homotopy definition. Finally, as one of the major objectives of this paper, we prove that the functor from simplicial objects to crossed modules in modified categories of interest preserves the homotopy as well as the homotopy equivalence.


Author(s):  
Martin Raussen

A directed space is a topological space $X$ together with a subspace $\vec {P}(X)\subset X^I$ of directed paths on $X$ . A symmetry of a directed space should therefore respect both the topology of the underlying space and the topology of the associated spaces $\vec {P}(X)_-^+$ of directed paths between a source ( $-$ ) and a target ( $+$ )—up to homotopy. If it is, moreover, homotopic to the identity map—in a directed sense—such a symmetry will be called an inessential d-map, and the paper explores the algebra and topology of inessential d-maps. Comparing two d-spaces $X$ and $Y$ ‘up to symmetry’ yields the notion of a directed homotopy equivalence between them. Under appropriate conditions, all directed homotopy equivalences are shown to satisfy a 2-out-of-3 property. Our notion of directed homotopy equivalence does not agree completely with the one defined in Goubault (2017, arxiv:1709:05702v2) and Goubault, Farber and Sagnier (2020, J. Appl. Comput. Topol. 4, 11–27); the deviation is motivated by examples. Nevertheless, directed topological complexity, introduced in Goubault, Farber and Sagnier (2020) is shown to be invariant under our notion of directed homotopy equivalence. Finally, we show that directed homotopy equivalences result in isomorphisms on the pair component categories of directed spaces introduced in Goubault, Farber and Sagnier (2020).


2020 ◽  
Vol 13 (2) ◽  
pp. 68-108
Author(s):  
Олександра Олександрівна Хохлюк ◽  
Sergiy Ivanovych Maksymenko

Let $M, N$ the be smooth manifolds, $\mathcal{C}^{r}(M,N)$ the space of ${C}^{r}$ maps endowed with the corresponding weak Whitney topology, and $\mathcal{B} \subset \mathcal{C}^{r}(M,N)$ an open subset.It is proved that for $0<r<s\leq\infty$ the inclusion $\mathcal{B} \cap \mathcal{C}^{s}(M,N) \subset \mathcal{B}$ is a weak homotopy equivalence.It is also established a parametrized variant of such a result.In particular, it is shown that for a compact manifold $M$, the inclusion of the space of $\mathcal{C}^{s}$ isotopies $\eta:[0,1]\times M \to M$ fixed near $\{0,1\}\times M$ into the space of loops $\Omega(\mathcal{D}^{r}(M), \mathrm{id}_{M})$ of the group of $\mathcal{C}^{r}$ diffeomorphisms of $M$ at $\mathrm{id}_{M}$ is a weak homotopy equivalence.


2020 ◽  
Vol 5 (3) ◽  
pp. 501-537
Author(s):  
Koen van den Dungen ◽  
Bram Mesland
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document