nonlinear elliptic problem
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Mengyao Chen ◽  
Qi Li

This paper deals with the following nonlinear elliptic problem \begin{equation}\label{eq0.1} -\varepsilon^2\Delta u+\omega V(x)u=u^{p}+u^{2^{*}-1},\quad u> 0\quad\text{in}\ \R^N, \end{equation} where $\omega\in\R^{+}$, $N\geq 3$, $p\in (1,2^{*}-1)$ with $2^{*}={2N}/({N-2})$, $\varepsilon> 0$ is a small parameter and $V(x)$ is a given function. Under suitable assumptions, we prove that problem (\ref{eq0.1}) has multi-peak solutions by the Lyapunov-Schmidt reduction method for sufficiently small $\varepsilon$, which concentrate at local minimum points of potential function $V(x)$. Moreover, we show the local uniqueness of positive multi-peak solutions by using the local Pohozaev identity.


2021 ◽  
Vol 7 (1) ◽  
pp. 50-65
Author(s):  
Mustapha Ait Hammou ◽  
Elhoussine Azroul

AbstractThe aim of this paper is to establish the existence of solutions for a nonlinear elliptic problem of the form\left\{ {\matrix{{A\left( u \right) = f} \hfill & {in} \hfill & \Omega \hfill \cr {u = 0} \hfill & {on} \hfill & {\partial \Omega } \hfill \cr } } \right.where A(u) = −diva(x, u, ∇u) is a Leray-Lions operator and f ∈ W−1,p′(.)(Ω) with p(x) ∈ (1, ∞). Our technical approach is based on topological degree method and the theory of variable exponent Sobolev spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 658 ◽  
Author(s):  
Dumitru Motreanu ◽  
Angela Sciammetta ◽  
Elisabetta Tornatore

The paper investigates a nonlinear elliptic problem with a Robin boundary condition, which exhibits a convection term with full dependence on the solution and its gradient. A sub- supersolution approach is developed for this type of problems. The main result establishes the existence of a solution enclosed in the ordered interval formed by a sub-supersolution. The result is applied to find positive solutions.


2019 ◽  
Vol 21 (07) ◽  
pp. 1850052 ◽  
Author(s):  
Yessine Dammak ◽  
Rabeh Ghoudi

This paper is concerned with the following nonlinear elliptic problem involving nearly critical exponent [Formula: see text]: [Formula: see text] in [Formula: see text], [Formula: see text] on [Formula: see text], where [Formula: see text] is a bounded smooth domain in [Formula: see text], [Formula: see text], [Formula: see text] is a small positive parameter. As [Formula: see text] goes to zero, we construct a solution with the shape of a tower of sign changing bubbles.


Sign in / Sign up

Export Citation Format

Share Document