standardized precipitation evapotranspiration index
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 58)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 22 (2) ◽  
pp. 41-49
Author(s):  
Siti Najma Nindya Utami ◽  
Rista Hernandi Virgianto ◽  
Dzikrullah Akbar

Intisari Kekeringan merupakan bencana kompleks yang dapat menyebabkan kerugian masyarakat di berbagai sektor. Salah satu wilayah yang berisiko tinggi mengalami kekeringan adalah Pulau Lombok. Wilayah ini memiliki lahan yang berisiko terkena kekeringan seluas 405.985 ha. Tingkat keparahan kekeringan meteorologis dapat diukur dengan Standardized Precipitation Evapotranspiration Index (SPEI). Salah satu karakteristik kekeringan adalah kondisi vegetasi tanaman yang buruk, oleh karena itu Standardized Vegetation Index (SVI) digunakan sebagai acuan dalam monitoring kekeringan agrikultural. Penelitian ini bertujuan untuk mengetahui hubungan antara SPEI dengan SVI untuk setiap pos hujan di Pulau Lombok tahun 2001-2018. Penelitian ini menggunakan data bulanan tahun 2001-2018 yang meliputi data observasi curah hujan, suhu maksimum, suhu minimum, penginderaan jauh Normalized Differences Vegetation Index (NDVI) dengan resolusi 0,05°, model FLDAS kecepatan angin yang juga didapatkan dengan resolusi 0,5°, lama penyinaran matahari, lintang, dan elevasi. Metode yang digunakan yaitu menghitung indeks kekeringan SPEI dan SVI, kemudian menghitung korelasi dan signifikansi untuk kedua indeks kekeringan tersebut. Hasilnya menunjukkan bahwa SPEI1 lebih tinggi berkorelasi dengan SVI+1 dengan kategori cukup kuat. Untuk SPEI3, SPEI6, dan SPEI12 berkorelasi cukup kuat hingga kuat dengan SVI0. Hal ini menunjukkan bahwa kekeringan jangka panjang akan langsung mempengaruhi kekeringan agrikultural atau kekeringan vegetasi saat itu juga. Nilai korelasi yang lebih tinggi untuk setiap indeks tersebar di pos hujan yang terletak di tengah-tengah Pulau Lombok, karena pengaruh kondisi geografis dan demografis Abstract Drought is a complex disaster because it can cause loss to society in various sectors. One of the high-risk areas of drought is Lombok Island. This area has 405,985 ha of drought risk. The severity of meteorological drought can be measured by the Standardized Precipitation Evapotranspiration Index (SPEI). One of the characteristics of drought is the poor condition of plant vegetation, therefore the Standardized Vegetation Index (SVI) is used as a reference in monitoring agricultural drought. This study aims to determine the relationship of SPEI with SVI for each rainfall post in Lombok Island from 2001-2018. This study uses monthly data from 2001-2018, including observation data of rainfall, maximum temperature, minimum temperature, remote sensing Normalized Differences Vegetation Index (NDVI) 0.05 °, FLDAS model of wind speed 0.5 °, length of the day, latitude, and elevation. The use method is to calculate SPEI and SVI, then calculate the correlation and significance for the two drought indices. The result shows that SPEI1 is higher in correlation with SVI+1, which is in a strong enough category. For SPEI3, SPEI6, and SPEI12, the correlation is strong enough to strong with SVI0. This suggests that long-term drought will directly affect agricultural drought or immediate vegetation drought. The higher correlation values ??for each index are spread over the rain posts located in the middle of Lombok Island because geographic and demographic conditions influence them.  


2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Hao Jiang ◽  
Lisheng Song ◽  
Yan Li ◽  
Mingguo Ma ◽  
Lei Fan

An increase in the frequency and severity of droughts associated with global warming has resulted in deleterious impacts on forest productivity in Southwest China. Despite attempts to explore the response of vegetation to drought, less is known about forest’s resilience in response to drought in Southwest China. Here, the reduced resilience of the forest was found based on remotely sensed optical and microwave vegetation products. The spatial distribution and temporal variation of resilience-reduced forest were assessed using the standardized precipitation evapotranspiration index (SPEI) and vegetation optical depth (VOD). Our findings showed that 40–50% of the forest appeared to have abnormally low resilience approximately 6 months after the severe drought. The spatial distributions of abnormally low resilience had a good agreement with the regions affected by the 2009–2011 drought events. In particular, our results indicated that areas of afforestation were more susceptible to drought than natural forest, maybe due to the different water uptake strategy of the diverse root systems. Our findings highlight the vulnerability of afforestation areas to climate change, and recommend giving more attention to soil water availability.


2021 ◽  
Vol 9 (1) ◽  
pp. 24
Author(s):  
César Sáenz ◽  
Javier Litago ◽  
Klaus Wiese ◽  
Laura Recuero ◽  
Victor Cicuéndez ◽  
...  

Drought is a natural phenomenon in which the precipitation amount is below normal in a specific region over a long period. The main objective of this study is to identify periods of drought in Ecuador between 2001 and 2018 using the Standardized Precipitation Evapotranspiration Index (SPEI) and the Normalized Difference Water Index (NDWI) derived from MODIS data. Firstly, the SPEI at a six-month scale and the Runs theory were used to identify periods of drought. Secondly, the NDWI from MOD09A1 MODIS product was used to identify the areas affected by drought.


MAUSAM ◽  
2021 ◽  
Vol 70 (4) ◽  
pp. 833-840
Author(s):  
NARENDRA DHANGAR ◽  
SWAPNIL VYAS ◽  
PULAK GUHATHAKURTA ◽  
SHWETA MUKIM ◽  
NIVEDITA TIDKE ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1691
Author(s):  
Zin Mie Mie Sein ◽  
Xiefei Zhi ◽  
Faustin Katchele Ogou ◽  
Isaac Kwesi Nooni ◽  
Kenny T. C. Lim Kam Sian ◽  
...  

Drought research is an important aspect of drought disaster mitigation and adaptation. For this purpose, we used the Standardized Precipitation Evapotranspiration Index (SPEI) to investigate the spatial-temporal pattern of drought and its impact on crop production. Using monthly precipitation (Precip) and temperature (Temp) data from 1986–2015 for 39 weather stations, the drought index was obtained for the time scale of 3, 6, and 12 months. The Mann–Kendall test was used to determine trends and rates of change. Precip and Temp anomalies were investigated using the regression analysis and compared with the drought index. The link between drought with large-scale atmospheric circulation anomalies using the Pearson correlation coefficient (R) was explored. Results showed a non-uniform spatial pattern of dryness and wetness which varied across Myanmar agro-ecological zones and under different time scales. Generally, results showed an increasing trend for the SPEI in the three-time scales, signifying a high tendency of decreased drought from 1986–2015. The fluctuations in dryness/wetness might linked to reduction crop production between 1986–1999 and 2005, 2008, 2010, 2013 cropping years. Results show relationship between main crops production and climate (teleconnection) factors. However, the low correlation values (i.e., <0.49) indicate the extent of the relationship within the natural variability. However, readers are urged to interpret this result cautiously as reductions in crop production may also be affected by other factors. We have demonstrated droughts evolution and trends using weather stations, thus providing useful information to aid policymakers in developing spatially relevant climate change adaptation and mitigation management plans for Myanmar.


2021 ◽  
Author(s):  
Javier Sigro

&lt;p&gt;The central sectors of the Pyrenees have experienced a significant increase in the average and extreme daily temperature during the last 80 years, as well as a downward trend in precipitation totals (Perez-Zan&amp;#243;n et al., 2016). This article addresses the evolution of the number, magnitude and duration of drought events in the Spanish Central Pyrenees from 8 decades of temperature and precipitation records integrated into the high-quality Central Pyrenees data set (Perez-Zan&amp;#243;n et al., 2016 ), using the Standardised Precipitation-Evapotranspiration Index (SPEI) index (Begueria et al., 2014; Vicente-Serrano et al., 2010). Series of monthly mean temperature, monthly maximum temperature, monthly minimum temperature and accumulated monthly precipitation corresponding to 15 quality controlled and homogeneity adjusted meteorological observatories have been used. This index has been calculated for 3, 6, 12 and 24 months, in order to analyse its behaviour &amp;#8203;&amp;#8203;for different types of drought.&lt;/p&gt;&lt;p&gt;The analysis of SPEI index series indicates a tendency to increase in the frequency of drought events and in their maximum magnitude in the 4 time scales of the SPEI index analysed, especially since the 1980s. This increase in the number of events is also accompanied by an increase in their duration, especially in the case of SPEI3 and SPEI6, although not in the case of SPEI12 and SPEI24&lt;/p&gt;&lt;p&gt;The spatial patterns calculated from the series of the indices also show a clear east-west pattern differentiated between the index signal for the eastern Pyrenees and the western Pyrenees.&lt;/p&gt;&lt;p&gt;REFERENCES&lt;/p&gt;&lt;p&gt;Beguer&amp;#237;a, S., Vicente-Serrano, S.M., Fergus Reig, Borja Latorre. Standardized Precipitation Evapotranspiration Index (SPEI) revisited (2014): parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring. International Journal of Climatology, 34: 3001-3023&lt;/p&gt;&lt;p&gt;P&amp;#233;rez-Zan&amp;#243;n, N., Sigr&amp;#243;, J. and Ashcroft, L. (2016), Temperature and precipitation regional climate series over the central Pyrenees during 1910&amp;#8211;2013. Int. J. Climatol. DOI:10.1002/joc.4823&lt;/p&gt;&lt;p&gt;Vicente-Serrano S.M., Santiago Beguer&amp;#237;a, Juan I. L&amp;#243;pez-Moreno, (2010) A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index - SPEI. Journal of Climate 23: 1696-1718.&lt;/p&gt;


2021 ◽  
Author(s):  
Javad Bazrafshan ◽  
Majid Cheraghalizadeh ◽  
Kokab Shahgholian

Abstract In a changing climate, drought indices as well as drought definitions need to be revisited, because some statistical properties, such as long-term mean, of climate series may change over time. The study aims to develop a Non-stationary Standardized Precipitation Evapotranspiration Index (NSPEI) for reliable and robust quantification of drought characteristics in a changing environment. The proposed indicator is based on a non-stationary log-logistic probability distribution, assuming the location parameter of the distribution is a multivariable function of time and climate indices, as covariates. The optimal non-stationary model was obtained using a forward selection method in the framework of Generalized Additive Models in Location, Scale and Shape (GAMLSS) algorithm. The Non-stationary and Stationary forms of SPEI (i.e. NSPEI and SSPEI) were calculated using the monthly precipitation and temperature data of 32 weather stations in Iran for the common period of 1964–2014. The results showed that almost at all the stations studied, the non-stationary log-logistic distributions outperformed the stationary one. Both drought indicators SSPEI and NSPEI significantly differed in terms of spatial and temporal variations of drought characteristics. While SSPEI identified the long-term and continuous drought/wet events, NSPEI revealed the short-term and frequent drought/wet periods at almost all the stations of interest. Finally, it was revealed that NSPEI, compared to SSPEI, was a more reliable and robust indicator of drought duration and drought termination in vegetation cover during the severest drought period (the 2008 drought), and therefore, was suggested as a suitable drought index to quantify drought impact on vegetation cover in Iran.


Sign in / Sign up

Export Citation Format

Share Document