habitat loss
Recently Published Documents


TOTAL DOCUMENTS

957
(FIVE YEARS 323)

H-INDEX

73
(FIVE YEARS 9)

2024 ◽  
Vol 84 ◽  
Author(s):  
G. Rehman ◽  
I. khattak ◽  
M. Hamayun ◽  
A. Rahman ◽  
M. Haseeb ◽  
...  

Abstract Mining is vital for human sustenance and a crucial sector in the state economy. However, its impacts on the environment and biodiversity cannot be underestimated. Which are potent to the attract government’s attention. Environment and wildlife are subject to the harmful impacts of mining and its related activities. In this study, districts, namely Mardan and Mohmand have been targeted with respect to mining impacts. The assessment was carried out on wildlife adversely affected by the mining sector. The fauna has been keenly observed to bring the calculated risks and threat perception of the regional wildlife. Total 9 species of mammals, 21 species of birds, were recorded in District Mardan. While in District Mohmand 2 species of mammals, 9 species of birds, and 4 species of reptiles were studied. The Study explored that mining primarily responsible for land degradation. Which lead to food and agriculture losses. Several other factors like blasting, pollution, hunting, deforestation, habitat loss was also observed. Deforestation surfaced one of the major causes for extinction of fauna in the said region. preemptive measures are needed to seize the man-made catastrophe.


2022 ◽  
Vol 266 ◽  
pp. 109437
Author(s):  
Lisabeth L. Willey ◽  
Michael T. Jones ◽  
Paul R. Sievert ◽  
Thomas S.B. Akre ◽  
Michael Marchand ◽  
...  

Author(s):  
Francisco Amorim ◽  
Ricardo Pita ◽  
Vanessa A. Mata ◽  
Pedro Beja ◽  
Hugo Rebelo

2021 ◽  
Vol 9 ◽  
Author(s):  
Ingrid de Mattos ◽  
Bárbara Zimbres ◽  
Jader Marinho-Filho

Landscape conversion of natural environments into agriculture and pasture are driving a marked biodiversity decline in the tropics. Consequences of fragmentation might depend upon habitat amount in the landscape, while the quality of remnants can also affect some species. These factors have been poorly studied in relation to different spatial scales. Furthermore, the impacts of these human-driven alterations may go beyond species loss, possibly causing a loss of ecosystem function and services. In this study, we investigated how changes in landscape configuration (patch size and isolation), habitat loss (considering a landscape gradient of 10, 25, and 40% of remnant forest cover), and habitat quality (forest structure) affect small mammal abundance, richness, taxonomic/functional diversity, and species composition in fragmented landscapes of semideciduous forests in the Brazilian Cerrado. Analyses were performed separately for habitat generalists and forest specialists. We live-trapped small mammals and measured habitat quality descriptors four times in 36 forest patches over the years 2018 and 2019, encompassing both rainy and dry seasons, with a total capture effort of 45,120 trap-nights. Regression analyses indicated that the effect of landscape configuration was not dependent on the proportion of habitat amount in the landscape to determine small mammal assemblages. However, both patch size and habitat loss impacted different aspects of the assemblages in distinct ways. Smaller patches were mainly linked to an overall increase in small mammal abundance, while the abundance of habitat generalists was also negatively affected by habitat amount. Generalist species richness was determined by the proportion of habitat amount in the landscape. Specialist richness was influenced by patch forest quality only, suggesting that species with more demanding habitat requirements might respond to fragmentation and habitat loss at finer scales. Taxonomic or functional diversity were not influenced by landscape structure or habitat quality. However, patch size and habitat amount in the landscape were the major drivers of change in small mammal species composition in semideciduous forests in the Brazilian savanna.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pedro J. Rey ◽  
Francisco M. Camacho ◽  
Rubén Tarifa ◽  
Carlos Martínez-Núñez ◽  
Teresa Salido ◽  
...  

Farming impacts animal-mediated seed dispersal through mechanisms operating on at least two spatial scales. First, at the landscape scale, through habitat loss and land conversion to agriculture/livestock grazing, and second, at the farm scale, via a local intensification of agricultural practices. These two scales of farming impact seed dispersal function but have rarely been integrated. In particular, studies evaluating the effect of agriculture on the seed dispersal function of frugivorous birds in Mediterranean ecosystems are lacking. This study evaluates the role of landscape transformation, from fruit-rich woodland habitats to olive grove landscapes, together with local intensive practices of soil management on the persistence of the seed dispersal function for Mediterranean fleshy-fruited plants in olive landscapes of south Spain. We used bird censuses, mist-nets, and seed traps to characterize avian frugivore assemblages, frugivory, and seed deposition in the seminatural woodland habitat (SNWH) patches and olive fields of 40 olives farms spanning 20 localities distributed across the whole range of olive cultivation in Andalusia (southern Spain). We found that despite the remarkable dispersal function of olive grove landscapes, avian frugivore abundance and diversity, frugivory, and seed arrival decreased in olive fields compared to SNWH patches. Likewise, SNWH cover loss and/or olive growing expansion decreased avian frugivory and seed arrival. Interestingly, the habitat effects in the olive farms often depended on the landscape context. In particular, less diverse fruit-eating bird assemblages pooled in SNWH patches as olive grove cover increased or SNWH decreased in the landscape, while remaining relatively invariant in the olive fields. Finally, compared to conventional intensive agriculture, low-intensity management increased frugivory and seed deposition. We conclude that olive fields are less permeable to frugivores than expected due to the agroforest-like nature of these landscapes and that the presence of SNWH patches is crucial for the maintenance of frugivory and seed dispersal in agricultural landscapes. These results evidence that woodland habitat loss by olive expansion and intensive practices seriously threaten the dispersal service in olive-dominated landscapes. Maintenance, restoration, and promotion of woodland patches should be prioritized for the conservation of seed dispersal service and for enhancing the functional connectivity in human-shaped olive landscapes.


2021 ◽  
Author(s):  
Duojie Jiabu ◽  
Weide Li

Abstract In the field of ecology, habitat loss and fragmentation are the two main characteristic forms of habitat destruction and the main drivers of species extinction, resulting in the gradual loss of biodiversity. So far, many scholars have made some progress in the theoretical research of the spatial food web, but research on the effect of introducing an invasive species in an omnivorous food web is very rare. In order to explore the impact of invader on the persistence of species in omnivorous food webs, we constructed a model framework to describe the patch occupation of each species in omnivorous systems. Our model results show that invasive species is a prey of species in omnivorous food webs is easier to invade than invasive species is a predator of species in original omnivorous food webs on habitat loss and fragmentation. One conclusion also can be drawn is that when an invasive species is a prey of species in omnivorous food webs, no matter what trophic level the invasive species is invade, it is more successful. But when invasive species is a predator of species in different trophic levels on omnivorous food webs, they show different coexistence patterns. The invasion of a species has little effect upon the stability of original omnivorous food web for habitat loss and fragmentation, and will only make the original omnivorous food web more stable and more complicated. Therefore, we have proved that the omnivorous food web is stable and is not easy to destroy this ecological fact. Some examples to illustrate the reliability of our model results are discussed.


2021 ◽  
Author(s):  
Klementyna A Gawecka ◽  
Fernando Pedraza ◽  
Jordi Bascompte

Habitat destruction is a growing threat to biodiversity and ecosystem services. The ecological consequences of habitat loss and fragmentation involve reductions in species abundance and even the extinction of species and interactions. However, we do not yet understand how habitat loss can alter the coevolutionary trajectories of the remaining species or how coevolution, in turn, affects their response to habitat loss. To investigate this, we develop a spatially explicit model which couples metacommunity and coevolutionary dynamics. We show that, by changing the size, composition and structure of local networks, habitat destruction increases the diversity of coevolutionary outcomes across the landscape. Furthermore, we show that while coevolution dampens the negative effects of habitat destruction in mutualistic networks, its effects on the persistence of antagonistic communities are less predictable.


2021 ◽  
Author(s):  
◽  
Sarah Herbert

<p>In our current era, the Anthropocene, species are disappearing at an unprecedented rate due to the impact of humans on Earth’s environments. Of the many causes of these extinctions, habitat loss is thought to be the most severe. Three habitat management strategies are available for halting habitat loss: reservation, restoration and reconciliation. The latter two of these strategies actively seek to improve the ability of degraded or lost habitats to support species. If successful on a large enough scale, use of restoration and reconciliation (hereafter referred to collectively as ‘habitat enhancement’) could reverse the effects of habitat loss.  I evaluated the viability of habitat enhancement for the conservation of New Zealand’s lizard fauna. 83% of New Zealand’s 106+ endemic species are threatened or at risk of extinction. While habitat loss is one key driver of declines, predation by invasive mammals is the other. Neither of these processes are well understood. Habitat enhancement is increasingly being employed in New Zealand by landowners, community groups, conservationists, and businesses as a strategy for mitigating lizard declines, but outcomes are rarely investigated comprehensively. This is concerning because habitat manipulation potentially affects both exotic and native species, which has led to unexpected negative effects on threatened fauna in New Zealand and overseas. I posed four questions to help address this knowledge gap. (1) What habitat enhancement strategies are available for reptiles, and have they produced successful conservation outcomes? (2) How do habitat characteristics affect populations and communities of endemic New Zealand lizards? (3) How does the presence of invasive mammals affect populations and communities of endemic New Zealand lizards over intermediate to long-term time frames? (4) Can habitat enhancement produce positive conservation outcomes in the presence of invasive mammals?  A review of the global literature on habitat enhancement for reptiles identified 75 studies documenting 577 responses of 251 reptile species. For outcome evaluation, I adapted an existing stage-based framework for assessment of translocation success. High levels of success (84-85%) at Stages 1 (use of enhanced habitat) and 2 (evidence of reproduction in enhanced habitat) suggested that enhancement could be useful for creating areas that can be inhabited, and reproduced in, by reptiles. Fewer cases were successful at Stage 3 (30%; improvement of at least one demographic parameter demonstrated in enhanced habitat) or Stage 4 (43%; self-sustaining or source population established in enhanced habitat). Additionally, only 1% of the 577 cases sufficiently examined or modelled long-term population trends to allow evaluation against the Stage 4 criterion. Thus, there was a lack of evidence indicating that enhancement could result in higher population growth rates, or reduced extinction risk, of reptiles.  I conducted field work in the Wellington region to investigate the effects of habitat characteristics and mammals on terrestrial lizards inhabiting coastal environments. Surveys conducted in two mammal-invaded mainland areas and on two mammal-free offshore islands showed that presence or absence of invasive mammals had a stronger effect on lizard community structure than habitat variables. However, occupancy probabilities of northern grass skinks Oligosoma polychroma and Raukawa geckos Woodworthia maculata were positively correlated with increasing cover of divaricating shrubs. O. polychroma were also more likely to occupy patches with increasing cover by non-Muehlenbeckia vines. Mark-recapture studies were conducted at two mammal-invaded mainland sites to investigate the current abundance of lizard species: Turakirae Head and Pukerua Bay. Estimated densities of O. polychroma ranged between 3,980 and 4,078 individuals / ha and W. maculata between 4,067 and 38,372 individuals / ha. Other species known to occur, at least historically, at each site were either not detected or comprised only a small proportion of total lizard captures. Analysis of longitudinal lizard monitoring data available for Pukerua Bay, Turakirae Head, and an additional mammal-invaded site, Baring Head, did not reveal a significant decline in abundance, occupancy, or catch rates of O. polychroma over time periods ranging between six and 34 years, nor of W. maculata over six to 49 years. Habitat information available for Baring Head showed that the probability of local extinction of W. maculata was significantly lower at rocky sites.  Finally, I conducted a before-after-control-impact habitat enhancement experiment on lizard communities inhabiting 100 m2 plots on the mammal-invaded Miramar Peninsula. After a six-month pre-enhancement monitoring period, native plants and gravel piles were added to enhancement plots and lizard monitoring continued for a further nine months. Enhancement did not significantly affect plot use, body condition, or evidence of reproduction in Oligosoma aeneum, O. polychroma or W. maculata, but were considered successful at Stages 1 and 2 due to the absence of a negative effect. Neither the abundance, probability of entry into plots by birth or immigration, nor apparent survival of O. aeneum was significantly affected by enhancement (Stage 3). Apparent survival of O. polychroma increased significantly in response to enhancement, but this did not result in increased abundance.   Adding gravel and native vegetation (especially divaricating shrubs and vines) may be a suitable strategy for creating habitat in invaded coastal landscapes for O. polychroma and W. maculata. However, most of the other lizard species that would have historically occurred in mammal-invaded coastal areas of Wellington appeared to be sensitive to sustained mammal presence, even with low-to-moderate levels of control in operation. Therefore, habitat enhancement without intensive mammal control or eradication is not expected to benefit these species, nor be capable of restoring coastal lizard communities. In invaded landscapes it is, at best, a reconciliation measure that could allow co-existence of an endemic lizard community comprised of common species with invasive mammals. However, habitat enhancement could still be useful for restoring lizard communities in mammal-free sanctuaries.</p>


Sign in / Sign up

Export Citation Format

Share Document