<p>In our current era, the Anthropocene, species are disappearing at an unprecedented rate due to the impact of humans on Earth’s environments. Of the many causes of these extinctions, habitat loss is thought to be the most severe. Three habitat management strategies are available for halting habitat loss: reservation, restoration and reconciliation. The latter two of these strategies actively seek to improve the ability of degraded or lost habitats to support species. If successful on a large enough scale, use of restoration and reconciliation (hereafter referred to collectively as ‘habitat enhancement’) could reverse the effects of habitat loss. I evaluated the viability of habitat enhancement for the conservation of New Zealand’s lizard fauna. 83% of New Zealand’s 106+ endemic species are threatened or at risk of extinction. While habitat loss is one key driver of declines, predation by invasive mammals is the other. Neither of these processes are well understood. Habitat enhancement is increasingly being employed in New Zealand by landowners, community groups, conservationists, and businesses as a strategy for mitigating lizard declines, but outcomes are rarely investigated comprehensively. This is concerning because habitat manipulation potentially affects both exotic and native species, which has led to unexpected negative effects on threatened fauna in New Zealand and overseas. I posed four questions to help address this knowledge gap. (1) What habitat enhancement strategies are available for reptiles, and have they produced successful conservation outcomes? (2) How do habitat characteristics affect populations and communities of endemic New Zealand lizards? (3) How does the presence of invasive mammals affect populations and communities of endemic New Zealand lizards over intermediate to long-term time frames? (4) Can habitat enhancement produce positive conservation outcomes in the presence of invasive mammals? A review of the global literature on habitat enhancement for reptiles identified 75 studies documenting 577 responses of 251 reptile species. For outcome evaluation, I adapted an existing stage-based framework for assessment of translocation success. High levels of success (84-85%) at Stages 1 (use of enhanced habitat) and 2 (evidence of reproduction in enhanced habitat) suggested that enhancement could be useful for creating areas that can be inhabited, and reproduced in, by reptiles. Fewer cases were successful at Stage 3 (30%; improvement of at least one demographic parameter demonstrated in enhanced habitat) or Stage 4 (43%; self-sustaining or source population established in enhanced habitat). Additionally, only 1% of the 577 cases sufficiently examined or modelled long-term population trends to allow evaluation against the Stage 4 criterion. Thus, there was a lack of evidence indicating that enhancement could result in higher population growth rates, or reduced extinction risk, of reptiles. I conducted field work in the Wellington region to investigate the effects of habitat characteristics and mammals on terrestrial lizards inhabiting coastal environments. Surveys conducted in two mammal-invaded mainland areas and on two mammal-free offshore islands showed that presence or absence of invasive mammals had a stronger effect on lizard community structure than habitat variables. However, occupancy probabilities of northern grass skinks Oligosoma polychroma and Raukawa geckos Woodworthia maculata were positively correlated with increasing cover of divaricating shrubs. O. polychroma were also more likely to occupy patches with increasing cover by non-Muehlenbeckia vines. Mark-recapture studies were conducted at two mammal-invaded mainland sites to investigate the current abundance of lizard species: Turakirae Head and Pukerua Bay. Estimated densities of O. polychroma ranged between 3,980 and 4,078 individuals / ha and W. maculata between 4,067 and 38,372 individuals / ha. Other species known to occur, at least historically, at each site were either not detected or comprised only a small proportion of total lizard captures. Analysis of longitudinal lizard monitoring data available for Pukerua Bay, Turakirae Head, and an additional mammal-invaded site, Baring Head, did not reveal a significant decline in abundance, occupancy, or catch rates of O. polychroma over time periods ranging between six and 34 years, nor of W. maculata over six to 49 years. Habitat information available for Baring Head showed that the probability of local extinction of W. maculata was significantly lower at rocky sites. Finally, I conducted a before-after-control-impact habitat enhancement experiment on lizard communities inhabiting 100 m2 plots on the mammal-invaded Miramar Peninsula. After a six-month pre-enhancement monitoring period, native plants and gravel piles were added to enhancement plots and lizard monitoring continued for a further nine months. Enhancement did not significantly affect plot use, body condition, or evidence of reproduction in Oligosoma aeneum, O. polychroma or W. maculata, but were considered successful at Stages 1 and 2 due to the absence of a negative effect. Neither the abundance, probability of entry into plots by birth or immigration, nor apparent survival of O. aeneum was significantly affected by enhancement (Stage 3). Apparent survival of O. polychroma increased significantly in response to enhancement, but this did not result in increased abundance. Adding gravel and native vegetation (especially divaricating shrubs and vines) may be a suitable strategy for creating habitat in invaded coastal landscapes for O. polychroma and W. maculata. However, most of the other lizard species that would have historically occurred in mammal-invaded coastal areas of Wellington appeared to be sensitive to sustained mammal presence, even with low-to-moderate levels of control in operation. Therefore, habitat enhancement without intensive mammal control or eradication is not expected to benefit these species, nor be capable of restoring coastal lizard communities. In invaded landscapes it is, at best, a reconciliation measure that could allow co-existence of an endemic lizard community comprised of common species with invasive mammals. However, habitat enhancement could still be useful for restoring lizard communities in mammal-free sanctuaries.</p>