movement amplitude
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259862
Author(s):  
Per-Anders Fransson ◽  
Maria H. Nilsson ◽  
Stig Rehncrona ◽  
Fredrik Tjernström ◽  
Måns Magnusson ◽  
...  

Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.


2021 ◽  
Author(s):  
Marlene Meyer ◽  
Johanna E van Schaik ◽  
Francesco Poli ◽  
Sabine Hunnius

When teaching infants new actions, parents tend to modify their movements. Infants prefer these infant-directed actions (IDAs) over adult-directed actions and learn well from them. Yet, it remains unclear how parents’ action modulations capture infants’ attention. Typically, making movements larger than usual is thought to draw attention. Recent findings, however, suggest that parents might exploit movement variability to highlight actions. We hypothesized that variability in movement amplitude rather than higher amplitude is capturing infants’ attention during IDAs. Using EEG, we measured 15-month-olds’ brain activity while they were observing action demonstrations with normal, high, or variable amplitude movements. Infants’ theta power (4-5Hz) in fronto-central channels was compared between conditions. Frontal theta was significantly higher, indicating stronger attentional engagement, in the variable compared to the other conditions. Computational modelling showed that infants’ frontal theta power was predicted best by how surprising each movement was. Thus, surprise induced by variability in movements rather than large movements alone engages infants’ attention during IDAs. Infants with higher theta power for variable movements were more likely to perform actions successfully and to explore objects novel in the context of the given goal. This highlights the brain mechanisms by which IDAs enhance infants’ attention, learning, and exploration.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marion Dagenais ◽  
Clémentine Brun ◽  
Alice Ohayon ◽  
Catherine Mercier

People with fibromyalgia (FM) have movement-related fear impacting on daily activities. While virtual reality has been used as a distractor to promote exercise, it can be used to manipulate visual feedback (VF) about movement, potentially influencing pain and movement. Objectives: A. To determine whether altered VF modulates pain during movement; B. To compare adaptation to an altered VF between FM participants and healthy controls (HC); C. To explore relationships between adaptation, limb position sense, kinesiophobia and pain. 20 FM participants and 20 HC performed a reaching task during two sessions in a KINARM exoskeleton including a virtual reality interface allowing to replace their arm with a virtual arm. In one session, VF was altered to show GREATER movements while in the other it showed SMALLER movements (randomized order). Pain was assessed periodically using a numerical rating scale. Movement amplitude was assessed during exposure to altered VF (adaptation) and pre-/post-exposure (without VF; after-effects). Limb position sense was assessed with a KINARM task, and kinesiophobia was assessed with the Tampa Scale for Kinesiophobia (TSK-11). Pain intensity increased slightly with movement repetitions (p < 0.001), but did not differ between the VF conditions (GREATER vs. SMALLER). Both groups exhibited visuomotor adaptation, as shown by VF-dependent changes in movement amplitude and speed during exposure to altered VF, and by the presence of VF-dependent after-effects (p < 0.001 for all variables). However, no differences were observed across groups for any of these variables, despite the fact that FM had significantly more difficulty to correctly detect VF conditions than HC (p = 0.046). No clear limb position sense deficits were observed in FM participants, and no significant relationships were found between TSK-11 scores and changes in pain intensity during exposure to altered VF. Altering VF did not influence pain during a reaching task in the FM group. Surprisingly, both groups adapted similarly to altered VF. Visuomotor adaptation is therefore preserved in FM, despite impairments in sensory perception and the poor ability to detect VF alterations in the present study. Further research is warranted to clarify the relationship between sensory perceptions and motor control in FM.


Author(s):  
Sergey A. Moiseev ◽  
◽  
Aleksandr M. Pukhov ◽  
Ekaterina A. Mikhaylova ◽  
Asiat T. Gafarova ◽  
...  

One of the directions of research into movement variability studies it at changing external or internal conditions during motor task performance. The results of such investigations are ambivalent even when analysing movements with similar kinematic structure. The aim of the research was to study the variability of skeletal muscle bioelectric activity and space-time characteristics of various punches in boxing at fatigue. Six highly skilled boxers of different weight classes were involved. We analysed parameters of variation of muscle electromyographic activity, distance and speed of the anthropometric points of body segments, as well as joint movement amplitude under regular conditions and after an aerobic motor load. We found low amplitude variability in most of the skeletal muscles under study, both in regular conditions and after a motor load. At fatigue, amplitude variability of almost all muscles decreased. Under regular conditions, the movement amplitude of the shoulder, elbow and hip joints on the bodyʼs right side was more varied than that in the joints on the left. After a motor load, changes in the variability of joint movement amplitude during the performance of different punches were dissimilar. The most variable were changes in the angles of the right side of the body, especially the elbow and hip joints, when performing a direct punch. The least changes under the load were observed in the movement amplitude of the elbow and hip joints on the left side. Thus, variability changes in kinematic parameters caused by skeletal muscle activity are a mechanism for maintaining stability of motor task performance. Presumably, the central neural control of complex coordination movements in boxers when performing punches is carried out through the formation of kinematic and muscle synergies. More research is needed to clarify the mechanism of formation and functioning of kinematic synergies and their variability.


2021 ◽  
Vol 4 ◽  
pp. 205920432110317
Author(s):  
Ian D. Colley ◽  
Manuel Varlet ◽  
Jennifer MacRitchie ◽  
Peter E. Keller

Interpersonal coordination in musical ensembles often involves multisensory cues, with visual information about body movements supplementing co-performers’ sounds. Previous research on the influence of movement amplitude of a visual stimulus on basic sensorimotor synchronization has shown mixed results. Uninstructed visuomotor synchronization seems to be influenced by amplitude of a visual stimulus, but instructed visuomotor synchronization is not. While music performance presents a special case of visually mediated coordination, involving both uninstructed (spontaneously coordinating ancillary body movements with co-performers) and instructed (producing sound on a beat) forms of synchronization, the underlying mechanisms might also support rhythmic interpersonal coordination in the general population. We asked whether visual cue amplitude would affect nonmusicians’ synchronization of sound and head movements in a musical drumming task designed to be accessible regardless of musical experience. Given the mixed prior results, we considered two competing hypotheses. H1: higher amplitude visual cues will improve synchronization. H2: different amplitude visual cues will have no effect on synchronization. Participants observed a human-derived motion capture avatar with three levels of movement amplitude, or a still image of the avatar, while drumming along to the beat of tempo-changing music. The moving avatars were always timed to match the music. We measured temporal asynchrony (drumming relative to the music), predictive timing, ancillary movement fluctuation, and cross-spectral coherence of ancillary movements between the participant and avatar. The competing hypotheses were tested using conditional equivalence testing. This method involves using a statistical equivalence test in the event that standard hypothesis tests show no differences. Our results showed no statistical differences across visual cues types. Therefore, we conclude that there is not a strong effect of visual stimulus amplitude on instructed synchronization.


2020 ◽  
Author(s):  
Ryan M. Glanz ◽  
James C. Dooley ◽  
Greta Sokoloff ◽  
Mark S. Blumberg

AbstractPrimary motor cortex (M1) undergoes protracted development in rodents, functioning initially as a sensory structure. As we reported previously in neonatal rats (Dooley and Blumberg, 2018), self-generated forelimb movements—especially the twitch movements that occur during active sleep—trigger sensory feedback (reafference) that strongly activates M1. Here, we expand our investigation by using a video-based approach to quantify the kinematic features of forelimb movements with sufficient precision to reveal receptive-field properties of individual M1 units. At postnatal day (P) 8, nearly all M1 units were strongly modulated by movement amplitude, but only during active sleep. By P12, the majority of M1 units no longer exhibited amplitude-dependence, regardless of sleepwake state. At both ages, movement direction produced changes in M1 activity, but to a much lesser extent than did movement amplitude. Finally, we observed that population spiking activity in M1 becomes more continuous and decorrelated between P8 and P12. Altogether, these findings reveal that M1 undergoes a sudden transition in its receptive field properties and population-level activity during the second postnatal week. This transition marks the onset of the next stage in M1 development before the emergence of its later-emerging capacity to influence motor outflow.


2020 ◽  
Vol 10 (10) ◽  
pp. 724 ◽  
Author(s):  
Harjo J. de Poel ◽  
Melvyn Roerdink ◽  
C. (Lieke) E. Peper ◽  
Peter J. Beek

The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination.


2020 ◽  
Vol 73 (12) ◽  
pp. 2362-2375
Author(s):  
Hannah Masoner ◽  
Alen Hajnal ◽  
Joseph D Clark ◽  
Catherine Dowell ◽  
Tyler Surber ◽  
...  

Visual perception of whether an object is within reach while standing in different postures was investigated. Participants viewed a three-dimensional (3D) virtual reality (VR) environment with a stimulus object (red ball) placed at different egocentric distances. Participants reported whether the object was reachable while in a standard pose as well as in two separate active balance poses (yoga tree pose and toe-to-heel pose). Feedback on accuracy was not provided, and participants were not allowed to attempt to reach. Response time, affordance judgements (reachable and not reachable), and head movements were recorded on each trial. Consistent with recent research on perception of reaching ability, the perceived boundary occurred at approximately 120% of arm length, indicating overestimation of perceived reaching ability. Response times increased with distance, and were shortest for the most difficult pose—the yoga tree pose. Head movement amplitude increased with increases in balance demands. Unexpectedly, the coefficient of variation was comparable in the two active balance poses, and was more extreme in the standard control pose for the shortest and longest distances. More complex descriptors of postural sway (i.e., effort-to-compress) were predictive of perception while in the tree pose and the toe-to-heel pose, as compared with control stance. This demonstrates that standard measures of central tendency are not sufficient for describing multiscale interactions of postural dynamics in functional tasks.


Sign in / Sign up

Export Citation Format

Share Document